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Metrics and pseudometrics

I A pseudometric on a set X is a function d : X × X → [0;∞) with
d(x , x)=0, d(x , y)=d(y , x), and triangle inequality

d(x , z) ≤ d(x , y) + d(y , z)

I A metric is a pseudometric such that d(x , y)=0 only when x =y .

Remarks
• For a pseudometric space (X , d),

xRy ⇐⇒ d(x , y)=0

is an equivalence relation. The pseudometric d induces a metric
on the quotient X/R.

• If d is a pseudometric and δ > 0, then dδ(x , y)=d(x , y) + δ
(for x 6=y) defines a metric.

• Often useful to admit d : X × X → [0;∞]. Then d(x , y) <∞ is

an equivalence relation.



Complete, compact, separable

A metric space (X , d) is called

I complete if every Cauchy sequence converges

I compact if every sequence has a convergent subsequence

I separable if there is countable dense subset

I totally bounded (= precompact) if ∀ ε > 0 ∃ a finite ε-dense subset
Xε ⊆ X , i.e.

X =
⋃

x∈Xε

Bε(x)

Implications

I separable ⇔ topology has a countable basis

I totally bounded ⇒ separable

I totally bounded ⇔ every sequence has a Cauchy subsequence

I compact ⇔ complete and totally bounded



Examples: classical sequence spaces

Examples

I Closed balls in `2 are complete, separable, not compact.

I Closed balls in `∞ are complete, not separable.

Recall definitions: For 1 ≤ p ≤ ∞, `p is the space of sequences

x = (xk)k∈N = (x1, x2, . . . )

of real numbers such that the `p-norm

||x ||p =

{
(
∑∞

k=1 |xk |p)
1/p

for p <∞
supk∈N |xk | for p =∞

is finite. Banach spaces, for p=2 Hilbert. For p ≤ q,

`1 ⊂ `p ⊂ `q ⊂ c0 ⊂ c ⊂ `∞



Fréchet embedding

Theorem. Every separable metric space (X , d) admits an isometric
embedding into `∞.

Proof. Choose a dense sequence (xk)k∈N in X and define φ : X → `∞ by

φ(x) =
(
φk(x)

)
k∈N =

(
d(x , xk)− d(xk , x0)

)
k∈N

Then for x , y ∈ X ,

|φk(x)− φk(y)| = |d(x , xk)− d(y , xk)| ≤ d(x , y)

with equality obtained when xk approaches x or y . Therefore,

||φ(x)− φ(y)||∞ = d(x , y) . �

Exercise. Find a metric space (X , d) consisting of four points that does not

admit an isometric imbedding into Hilbert space `2.



Cauchy completion and precompactness

Theorem. For every metric space (X , d) there is a complete metric space
(X̂ , d̂) with an isometric embedding ι : X → X̂ such that ι(X )
is dense in X̂ .

I (X̂ , d̂) unique up to isometry, called the completion of (X , d).

I Construction: Generalize Cantor’s definition of the real numbers from the
rationals. Define a pseudometric on the set of all Cauchy-sequences in X
by

d((x1, x2, . . . ), (y1, y2, . . . )) := lim
k→∞

d(xk , yk) .

Then define X̂ to be the quotient metric space identifying elements with
distance zero. Thus points of X̂ are equivalence classes

ξ = [(x1, x2, . . . )]

of Cauchy sequences in X , where equivalence means having distance zero.

Theorem. (X , d) precompact ⇐⇒ (X̂ , d̂) compact.



Hausdorff distance

For a subset A ⊆ X of a metric space (X , d), the r -neighbourhood of A
is defined as

Ur (A) := {x ∈ X | dist(x ,A) < r} =
⋃

x∈A

Br (x)

Hausdorff-distance of non-empty subsets A,B ⊆ X :

dH(A,B) := inf{r > 0 | A ⊆ Ur (B) and B ⊆ Ur (A)}
= max { sup

a∈A
dist(a,B), sup

b∈B
dist(b,A) }

Properties

I dH satisfies triangle inequality, is a pseudometric on the set of
bounded subsets of X .

I dH(A,B) = dH(A,B)

I dH(A,B)=0 ⇐⇒ A = B

I dH({a}, {b}) = d(a, b)



Hausdorff compactness theorem

Let C(X ) be the set of all non-empty closed bounded subsets of X ,
equipped with the metric dH .

Theorem

I If X is complete, then C(X ) is complete (Hahn 1932).

I If X is totally bounded, then C(X ) is totally bounded.

I If X is compact, then C(X ) is compact (Hausdorff, Blaschke).

Remark

I Same if C(X ) denotes the set of all non-empty compact subsets.

History

Blaschke selection theorem (1916). Every dH -bounded sequence of compact
convex sets Ak ⊆ Rn subconverges to a compact convex set A ⊆ Rn.

I Proof. There is a compact X ⊂ Rn that contains every Ak . Apply
previous theorem to obtain a subsequence converging to some A ∈ C(X )
and check that compact Hausdorff-limits of convex sets are convex.



Hausdorff compactness: proof

I C(X ) is totally bounded: Given ε > 0, choose a finite subset Xε ⊆ X
that is ε-dense in X . Then the power set P(Xε) is an ε-dense finite
subset of C(X ).

I C(X ) is complete: Let Ak ∈ C(X ) be a Cauchy sequence. Define

A := F lim supAk =
∞⋂

n=1

An ∪ An+1 ∪ . . .

Claim. A ∈ C(X ), and dH(An,A)→ 0 as n→∞.

I Remark : The set F lim supAk is called the upper closed limit of the
sequence (Ak)k∈N. An alternative description is

F lim supAk = {x ∈ X | ∀ε > 0 : Bε(x) ∩ Ak 6= ∅ for ∞ many k}
= {accumulation points of sequences an ∈ An}



Proof of claim

I A ⊆ Uε(An) for all large n : a ∈ A implies that the ε/2-ball around a
meets infinitely many of the Ak , and so

a ∈ Uε/2(Ak)

for these k. Since the sequence is Cauchy, we have Ak ⊆ Uε/2(An) for all
large k and n. Hence

a ∈ Uε/2(Uε/2(An)) ⊆ Uε(An) .

I An ⊆ Uε(A) for all large n : If x ∈ An for sufficiently large n, then there is
a subsequence n = n1 < n2 < . . . and a sequence of points ank ∈ Ank

starting at a1 = x such that d(ank , ank+1 ) < ε/2k+1 . The sequence
(ank )k∈N is Cauchy, hence converges to some a ∈ X , and by definition of
A we have a ∈ A. By the triangle inequality,

d(x , a) ≤
∞∑
k=1

d(ank , ank+1 ) < ε. �



Description of Hausdorff limits: topological limits

Recall the upper closed limit of the sequence (Ak)k∈N :

I F lim supAk = {x ∈ X | ∀ε > 0 : Bε(x) ∩ Ak 6= ∅ for ∞ many k}

I The lower closed limit is defined as

F lim inf Ak = {x ∈ X | ∀ε > 0 : Bε(x) ∩ Ak 6= ∅ for nearly all k}

I The closed limit is said to exist if both are equal :

F limAk := F lim inf Ak = F lim supAk .

Theorem

Consider Ak ,A ∈ C(X ).

I If dH(Ak ,A)→ 0, then F limAk exists and is equal to A.

I If X is compact and F limAk exists, then dH(Ak ,A)→ 0.



Examples

I (X , d) euclidean plane,
F limAk exists, but sequence
not Hausdorff convergent:

I (X , d) unit ball in Hilbert space `2,
F limAk exists, but sequence not
Hausdorff convergent:

I Menger sponge
Source: Wikipedia



Gromov-Hausdorff distance

Definition. The Gromov-Hausdorff distance between metric spaces X and
Y is defined as

dGH(X ,Y ) = inf
Z

inf
X ′,Y ′

dZ
H (X ′,Y ′)

where the infimum ∈ [0,∞] is taken over all metric spaces Z and all
subspaces X ′,Y ′ of Z that are isometric to X ,Y .

Comments

I dZ
H denotes the Hausdorff distance in the metric space (Z , dZ ).

I X ′,Y ′ carry the metrics obtained by restriction of dZ .

I Distance depends only on the isometry classes of X and Y .

I Reformulate:
dGH(X ,Y ) = inf

Z
inf
φ,ψ

dZ
H (φ(X ), ψ(Y ))

where the infimum is over all isometric embeddings φ : X → Z and
ψ : Y → Z .



Examples

I If Xε is an ε-dense subset of X with the induced metric, then
dGH(X ,Xε) < ε. So totally bounded metric spaces admit
approximation by finite metric spaces.

I If {p} is a one-point space, then dGH(X , {p})= 1
2 diam(X ), where

diam(X )= sup
x,y∈X

d(x , y)

Proof: Take Z =X t {p} and extend the
given metric from X to Z by setting
d(x , p) := 1

2
diam(X ).

I If diameters are finite, then

1
2 |diam(X )− diam(Y )| ≤ dGH(X ,Y ) ≤ 1

2 max{diam(X ), diam(Y )} .



Lipschitz-close implies GH-close

A map F : X→Y between metric spaces is called L-bi-lipschitz if

1

L
d(x , x ′) ≤ d(Fx ,Fx ′) ≤ L d(x , x ′) .

Claim. If F : X→Y is (1+ε)-bi-lipschitz and bijective, then

dGH(X ,Y ) ≤ εmax{diam(X ), diam(Y )} .

Proof. Can assume diameters are finite. Take Z =X t Y and extend the
metrics dX and dY to a metric(!) on Z by setting

d(x , y) := inf
a∈X

(
dX(x , a) + dY(y ,Fa)

)
+ εC

where C =max{diam(X ), diam(Y )}. Given y ∈Y, we show that
x =F−1y ∈X has distance at most εC from y : For every a∈X

d(x , y) ≤ dX(F−1y , a) + dY(y ,Fa) + εC .

Choose a=F−1y to obtain d(x , y) ≤ εC . �



Alternative definition 1

Proposition
dGH(X ,Y ) = inf

d
dXtY
H (X ,Y )

where X t Y is the disjoint union and the infimum is taken over all
admissible metrics d on X t Y , i.e. metrics that extend dX and dY .

Proof

I If d̂GH(X ,Y ) denotes the right hand side, then dGH ≤ d̂GH because the
infimum for dGH is extended over a larger set.

I Conversely given ε > 0, choose Z , X ′ and Y ′ such that

dZ
H (X ′,Y ′) ≤ dGH(X ,Y ) + ε . (∗)

I If X ′,Y ′ disjoint, restrict the metric of Z to the union X ′ ∪ Y ′ to get

d̂GH(X ,Y ) = d̂GH(X ′,Y ′) ≤ dGH(X ,Y ) + ε . (∗∗)

I If X ′,Y ′ are not disjoint, replace Z ,X ′,Y ′ by Z×[0, 1], X ′×{0},Y ′×{ε}.
Obtain equations (∗) and (∗∗) with ε replaced by 2ε. �



dGH is a metric

Claim
dGH(X ,Z ) ≤ dGH(X ,Y ) + dGH(Y ,Z )

Proof. Take admissible metrics dXtY and dYtZ and, for δ > 0, define an
admissible metric dXtZ on the disjoint union X t Z by

dXtZ (x , z) = inf
y∈Y

(
dXtY(x , y) + dYtZ (y , z)

)
+ δ

for x ∈ X and z ∈ Z . Then

dXtZ
H (X ,Z) ≤ dXtY

H (X ,Y ) + dYtZ
H (Y ,Z) + δ .

Now take the infimum over all admissible metrics dXtY and dYtZ , and
finally let δ → 0. �

Proposition. X ,Y compact with dGH(X ,Y )=0, then X ,Y are isometric.

Notation. Let M denote the set of isometry classes of compact metric
spaces 6= ∅. Then (M, dGH) is a metric space.



dGH is a metric

Proof of proposition. Take a sequence of admissible metrics dk on X t Y
such that the Hausdorff distance between X and Y with respect to dk is
≤ 1/k. Then there are (discontinuous) maps Ik : X→Y and Jk : Y→X
with

dk(x , Ik(x)) ≤ 1
k

and dk(y , Jk(y)) ≤ 1
k
.

The triangle inequality for dk then implies

d(Ik(x1), Ik(x2)) ≤ 2
k

+ d(x1, x2)

d(Jk(y1), Jk(y2)) ≤ 2
k

+ d(y1, y2)

d(x , Jk ◦ Ik(x)) ≤ 2
k

d(y , Ik ◦Jk(y)) ≤ 2
k

An Arzela-Ascoli argument yields limits I : X→Y and J : Y→X for
k→∞. (Obtain I : X→Y first on a countable dense subset A ⊆ X using
a diagonal argument and the compactness of Y, then extend from A to X .
Similarly for J.) Then I and J are the required isometries. �



Counterexample

Example. Two proper metric spaces with dGH(X ,Y ) = 0 that are not
isometric.

I Both X and Y are metric graphs obtained
from the real line by attaching segments of
suitable length at all integer points.

I For X attach a segment of length | sin(m)| to the point m ∈ Z.

I For Y attach a segment of length | sin(m + 1
2
)| to the point m ∈ Z.

I To see that dGH(X ,Y ) ≤ ε for every ε > 0, observe that X and Y are
isometrically embedded into the grid

Z = {(x , y) ∈ R2 | x or y ∈ Z}

equipped with its path metric. A suitable integer translation in the
x-direction will move X into an ε-neighborhood of Y .



Alternative definition 2

Proposition. For separable metric spaces X ,Y ,

dGH(X ,Y ) = inf
φ,ψ

d∞
H (φ(X ), ψ(Y ))

where the infimum is taken over all isometric embeddings φ : X → `∞

and ψ : Y → `∞, and d∞
H is the Hausdorff distance in `∞.

Proof. The inequality ≤ is clear. Conversely given ε > 0, choose an
admissible metric d on Z = X t Y such that

dZ
H (X ,Y ) ≤ dGH(X ,Y ) + ε .

Since (Z , d) is also separable, there is an isometric embedding
ι : Z → `∞, and we obtain isometric embeddings

φ : X → X t Y→ `∞ ψ : Y→ X t Y→ `∞ .

Then
d∞H (φ(X ), ψ(Y )) = dZ

H (X ,Y ) ≤ dGH(X ,Y ) + ε . �



Correspondences

Definition. Consider metric spaces X and Y .

I A correspondence (or surjective relation) between X and Y is a
subset

R ⊆ X × Y

such that the projections πX : X × Y → X and πY : X × Y → Y
remain surjective when restricted to R.

• Example: If f : X →Y is a surjective map, then the graph
R = {(x , f (x)) | x ∈ X} is a correspondence.

I The distortion of a correspondence is defined as

dis(R) = sup
(x,y),(x′,y ′)∈R

|dY(y , y ′)− dX(x , x ′)|

• Remark: If dis(R)=0, then R is the graph of an isometry.



Alternative definition 3

Theorem

dGH(X ,Y ) =
1

2
inf
R

dis(R)

where the infimum is taken over all correspondences R ⊆ X × Y .

Proof

I dGH(X ,Y ) ≥ 1
2

infR dis(R) :

If r > dGH(X ,Y ), then there is a metric space (Z , d) containing X andY
such that the Hausdorff distance in Z satisfies dH(X ,Y ) < r . Then

R := {(x , y) | d(x , y) < r}

is a correspondence, and 1

2
dis(R) < r

because for (x , y), (x ′, y ′)∈R

|d(y , y ′)−d(x , x ′)| ≤ d(x , y) + d(x ′, y ′) < 2r .



Alternative definition 3

I dGH(X ,Y ) ≤ 1
2

infR dis(R) :

Let R be a correspondence and r := 1
2

dis(R). We may assume r > 0.
Define an admissible metric(!) on Z =X t Y by

d(x , y) = inf
(x′,y′)∈R

(
d(x , x ′) + r + d(y ′, y)

)
.

Then the Hausdorff distance of X ,Y ⊆ Z is

dH(X ,Y ) ≤ r =
1

2
dis(R) :

Given x ∈ X , choose y ∈ Y such that (x , y) ∈ R. Then

d(x , y) ≤ d(x , x) + r + d(y , y) = r ,

and so the distance from x toY is ≤ r . �



ε-isometries

Definition. A map f : X→Y is called an ε-isometry if its distortion

dis(f ) := sup
x,x′∈X

|dY(fx , fx ′)− dX(x , x ′)| ≤ ε

and if f (X ) is ε-dense inY .

Proposition

I If dGH(X ,Y ) < ε, then there is a 2ε-isometry f : X→Y .

I If there is an ε-isometry f : X→Y , then dGH(X ,Y ) ≤ 3
2ε.

Proof. Use the previous theorem. If dGH(X ,Y ) < ε, take a
correspondence with dis(R) < 2ε. For each x choose y such that
(x , y) ∈ R and define f (x)=y . Then f is a 2ε-isometry.

Given an ε-isometry f : X→Y , define R := {(x , y) | d(fx , y) < ε}.
This is a correspondence with dis(R) ≤ 3ε. �



GH-limits

Definition. A sequence of metric spaces Xk converges to X in the
Gromov-Hausdorff sense (short: GH-converges to X ) if dGH(Xk ,X )→0
as k→∞. Notation:

Xk
GH−→ X (k→∞)

Remarks

I If X is compact, then X is unique up to isometry.

I Example: Every compact X is a GH-limit of a sequence of finite
metric spaces.

I Hausdorff convergent implies GH-convergent.

I Assume Xk , X compact, and Xk
GH−→ X . Then there are

X ′
k ,X

′ ⊆ `∞ isometric to Xk ,X such that X ′
k

d∞
H−→ X ′.

Proof later.



GH-convergence: pictures

In this section we first present Gromov-Hausdor↵ convergence, then metric measure conver-

gence, then the intrinsic flat convergence and finally, weakest of all, the notion of an ultralimit.

We include a few key examples, applications and further resources for each notion.

3.1. Gromov-Hausdor↵ Convergence of Metric Spaces. In 1981, Gromov introduced an

intrinsic Hausdor↵ convergence for sequences of metric spaces [38]. A few excellent references

are Gromov’s book [39], the textbook of Burago-Burago-Ivanov[14], Fukaya’s survey [35] and

Bridson-Haefliger’s book [11].

The Gromov-Hausdor↵ distance is defined between any pair of compact metric spaces,

(25) dGH(M1, M2) = inf
n

dZ
H ('1(M1),'2(M2)) : isom 'i : Mi ! Z

o

where the infimum is taken over all metric spaces Z and all isometric embeddings 'i : Mi ! Z.

An isometric embedding, ' : X ! Z satisfies

(26) dZ('(x1),'(x2)) = dX(x1, x2) 8x1, x2 2 X.

We write Mi
GH�! X i↵ dGH(Mj , X) ! 0. See Figure 4.

Figure 4. Gromov-Hausdor↵ Convergence

The sequences of Riemannian manifolds depicted in Figure 4 reveal a variety of properties

that are not conserved under Gromov-Hausdor↵ convergence. The first sequence Aj are the flat
12

Source: Christina Sormani, How Riemannian manifolds converge



Examples: bounded curvature collaps

I Circles; flat tori; M × S1

I The Hopf fibration S3 h−→ CP1 = S2

is the quotient map of the free isometric S1-action

e iθ(z1, z2) = (e iθz1, e
iθz2)

on the standard sphere S3 ⊆ C2. This is a Riemannian submersion
for a metric of constant curvature =4 on CP1.

• Take cyclic groups Ck ⊆ S1 of order k. Then

S3/Ck
GH−→ CP1 as k→∞

• Berger spheres: Define S3
ε =(S3, gε), where the Riemannian metric gε

is obtained by multiplying the standard Riemannian metric of S3

with a factor ε > 0 in the fiber direction. Then

S3
ε

GH−→ CP1 as ε→0 .



Examples: Heisenberg group

The 3-dimensional Heisenberg group H is the set of all




1 x z
0 1 y
0 0 1


, where x , y , z ∈ R .

The subset Γ ⊆ H of integral matrices is a discrete
subgroup. Consider the compact manifold M = Γ\H.

1. For ε>0, take basis for left invariant 1-forms

ω1 = ε dx ω2 = ε dy ω3 = ε3(dz−xdy)

Define Riemannian metric so that this is an ON-basis:

gε = ω1⊗ ω1 + ω2⊗ ω2 + ω3⊗ ω3

This is left invariant, and gε→0 as ε→0. Conclusion:

(M, gε)
GH−→ point as ε→0 .



Examples: Heisenberg (continued)

I The curvature in this example remains bounded: The Maurer-Cartan
equations dωk =ckijω

i∧ ωj are

dω1 = dω2 = 0 dω3 = −ε ω1∧ ω2

For the curvature tensor R one then calculates ||R||≤6||dω||=6ε.
So curvature → 0 as ε→ 0.

• This works for general nilpotent Lie groups G : choose basis for g∗ such

that ckij =0 unless i , j<k. These metrics descend to nilmanifold quotients

Γ\G ; and to compact infranil-quotients Λ\G after averaging over Λ/Γ.

2. Now consider the Riemannian metrics g ′
ε given by the ON-basis

ω1 = dx ω2 = dy ω3 = 1
ε (dz−xdy) .

For ε→0, (M, g ′
ε) converges to a metric space X which is M

equipped with the subriemannian metric defined by ω1, ω2 on the
plane field kerω3. Curvatures go to ±∞.



Properties inherited by GH-limits

Proposition. Suppose Xk
GH−→ Y . If each Xk is/has . . . , then Y is/has . . .

I separable

I totally bounded

I a proper space – if Y is complete

I a length space – if Y is complete

I a proper geodesic space – if Y is complete

I diameter ≤ D (in fact diamXk → diamY )

I properties of the form F (d11, d12, . . . , dk−1,k) ≥ 0 or =0,
where dij = d(xi , xj), and where F is continuous, e.g.

I δ-hyperbolic

I CBBκ (⇔ (1+3)κ-condition)

I CATκ (⇔ (2+2)κ-condition)

I complete geodesic with curv ≥ κ
I NOT: complete geodesic with curv ≤ κ (counterexample:

hyperboloids → double-cone)



Proofs: totally bounded

I For CBBκ, CATκ and curv see the lectures of Stephanie Alexander
at this summer school.

I Totally bounded. Pick a finite ε-dense subset in some Xk GH-close
toY, then move it toY via a correspondence. Details:

• Given ε > 0, fix k so large that dGH(Xk ,Y ) < ε/4. Then there is a
correspondence R ⊆ Xk ×Y with distortion dis(R)< ε/2. Take a
finite ε/2-dense subset X ′k ⊂ Xk . For each x ′∈X ′k choose a y ′∈Y
such that (x ′, y ′)∈R, and let Y ′ be the set of all such y ′.

• We claim that Y ′ is ε-dense in Y :

• Given y ∈Y , find x ∈Xk such that (x , y)∈R, and then x ′ ∈ X ′k at
distance < ε/2 from x . For the y ′∈Y ′ that corresponds to this x ′

we obtain

d(y , y ′) ≤ |d(y , y ′)− d(x , x ′)|+ d(x , x ′)

≤ dis(R) + d(x , x ′)

< ε . �



Proofs: proper

I Proper. A metric space X is called proper if all closed balls

B̄r (x) := {d(·, x) ≤ r}

are compact.

• Given a ball B̄r (y) ⊆ Y, there are xk ∈Xk corresponding to y , and
then for radii rk↘ r the balls B̄rk (xk) Hausdorff-converge to B̄r (y).

• Since all B̄rk (xk) are totally bounded, so is the limit B̄r (y). SinceY
is complete, B̄r (y) is complete, hence compact. �



Proofs: length space

I Length space. A length space is a metric space X such that d(x , x ′)
is the infimal length of curves joining x and x ′. Recall the
approximate mid point condition:

For all x , x ′∈X and ε > 0, there is an ε-midpoint m∈X , i.e.

max{d(x ,m), d(m, x ′)} ≤ 1
2d(x , x ′) + ε .

Then
I length space =⇒ approximate mid point condition

I ⇐= is true for complete metric spaces

• Verify this condition forY : Given y , y ′∈Y and ε > 0, fix k so large
that there is a correspondence with small distortion between Xk and
Y . Take points xk , x

′
k ∈Xk corresponding to y , y ′ and find an

ε-midpoint mk ∈Xk . Finally, let m∈Y be a point corresponding to
mk . Then m is a 3ε-midpoint for y , y ′. Since Y is assumed
complete, it is a length space. �



Proofs: proper geodesic

I Proper and geodesic. By definition, a geodesic space is a length
space such all pairs x , x ′ can be joined by a curve of length
= d(x , x ′). So every Xk is a proper length space, and so is the limit
Y . By the Hopf-Rinow-theorem, every proper length space is
geodesic. �

I Example. A complete limit Y of geodesic spaces Xk that is not
geodesic: Y is the metric graph constructed by joining two vertices
with a sequence of edges en of length 1+ 1

n for n=1, 2, . . .

Xk is obtained from Y by replacing the edge ek by an edge of
length 1.



Packing and covering

Definition. For a metric space X and ε > 0 define the covering and
packing numbers by

cov(X , ε) = min{ n | X can be covered by n closed ε-balls}
pack(X , ε) = sup{ n | X contains n disjoint ε

2 -balls}.

Lemma 1. cov(X , ε) ≤ pack(X , ε).

Proof. If Bε/2(x1), . . . ,Bε/2(xn) is a maximal disjoint set of ε/2-balls,
then the balls B̄ε(x1), . . . , B̄ε(xn) cover X . �

Lemma 2. If dGH(X ,Y ) ≤ δ, then

cov(X , ε) ≥ cov(Y , ε+ 2δ)

pack(X , ε) ≥ pack(Y , ε+ 2δ)

Proof. Use a correspondence with distortion 2δ′, δ′ > δ. �



Totally bounded sets in M

Theorem. For a subset C ⊆M, the following are equivalent:

(1) There is a constant D > 0 and a function N : (0,∞)→ N such that
diam(X ) ≤ D and pack(X , ε) ≤ N(ε) for all X ∈ C.

(2) Same as (1), but replace pack(X , ε) by cov(X , ε).

(3) C is totally bounded with respect to dGH .

Proof

(3)⇒(1) Recall that (3) means ∀δ > 0 ∃ finite δ-dense subset in C.
Consider such a subset C′ ⊆ C and let D ′ and N ′(ε) be upper bounds for
diam(·) and pack(·, ε) on C′.

Given X ∈ C, take C ∈ C′ such that dGH(X ,C) < δ. Then

diam(X ) ≤ diam(C)+2δ ≤ D ′+2δ

pack(X , ε) ≤ pack(C , ε−2δ) ≤ N ′(ε−2δ).

(1)⇒(2) by Lemma 1.



Totally bounded sets in M

(2)⇒(3) Fix ε > 0.

I The set F of finite metric spaces with at most N(ε) elements and
diameters ≤ D is totally bounded with respect to dGH .

Proof. With each F ∈F that has N ≤ N(ε) elements associate “the”
N×N matrix ∆(F ) = (dij) of pairwise distances of all the points in
F . These matrices have entries bounded by D, so they form a totally
bounded set in RN×N . If ∆(F ) and ∆(F ′) are δ-close, then there is a
correspondence (in fact a bijection) between F and F ′ with
distortion < δ, and so dGH(F ,F ′) ≤ δ.

I This set F is ε-dense for C.

Proof. Given X ∈ C, cover it by ≤ N(ε) balls of radius ε. Let F be
the set of centers of these balls. Then F ∈F , and dGH(X ,F ) ≤ ε.

I This works for every ε > 0. Conclude that every sequence in C
contains a Cauchy subsequence (diagonal argument). �



Completeness of M

Lemma (Gromov). For every totally bounded subset C ⊆M there is a
compact subset K ⊆ `∞ such that every X ∈ C admits an isometric
embedding into K .

As a corollary we obtain:

Theorem. The metric space (M, dGH) is complete.

Proof

Apply the Lemma to the set of terms {Xk | k ∈ N} ⊆M of a given
Cauchy sequence. The lemma says that the Xk have isometric copies X ′k
contained in some compact K ⊆ `∞. The Hausdorff compactness theorem
applied to K provides a subsequence X ′kj that d∞H -converges to a compact

X ⊆ K . This implies that Xkj
GH−→ X . Since the sequence was Cauchy,

Xk
GH−→ X . �



The space `∞(A)

It remains to prove Gromov’s lemma. Instead of embeddings into `∞=`∞(N),
we construct embeddings into `∞(A) for some other countably infinite set A.
This is the Banach space of all bounded functions f : A→ R with the
sup-norm. It is isometric to `∞(N).

Definition. Fix a sequence N = (N1,N2, . . . ) of positive integers and consider
the sets

A1 = {(n1) | n1 =1, . . . ,N1}
A2 = {(n1, n2) | n1 =1, . . . ,N1; n2 =1, . . . ,N2}
A3 = {(n1, n2, n3) | n1 =1, . . . ,N1; n2 =1, . . . ,N2; n3 =1, . . . ,N3}
etc., and then

A =
⋃∞

j=1
Aj

The elements f ∈ `∞(A) are bounded families of numbers

(f (a))a∈A = (fa)a∈A

where the indices a are of the form a = (n1, . . . , nk). We write f (n1, . . . , nk)
instead of f

(
(n1, . . . , nk)

)
.



Compact sets in `∞(A)

Sublemma. Let D > 0, and let e=(ε1, ε2, . . . ) be a sequence of positive
numbers such that

∑∞
j=1 εj <∞. Consider the subset F =FD,e ⊆ `∞(A)

defined by the following conditions:

(1) 0≤ f (n1)≤D for n1 =1, . . . ,N1

(2) |f (n1, . . . , nk , nk+1)− f (n1, . . . , nk)| ≤ εk

for all k and all (n1, . . . , nk+1)∈A. Then F is compact.

Proof

F is closed in `∞(A), hence complete. Therefore it suffices to show that
F is totally bounded. Note that we have finite dimensional subspaces

`∞(A1 ∪ · · · ∪ Ak) ↪→ `∞(A) .

I F ∩ `∞(A1 ∪ · · · ∪ Ak) is compact.

I By condition (2), F is contained in the ε̂k -neighbourhood of
F ∩ `∞(A1 ∪ · · · ∪ Ak), where ε̂k = εk + εk+1 + · · · → 0 as k→∞.

I Using this, every sequence in F has a Cauchy subsequence (diagonal
sequence argument). So F is totally bounded. �



Proof of Gromov lemma

Recall the statement: For every totally bounded C ⊆M there is a compact
K ⊆ `∞(N) such that every X ∈ C admits an isometric embedding into K .

Proof

I Choose D > 0 and a function N : (0,∞)→ N such that diam(X )≤D and
cov(X , ε)≤N(ε) for all X ∈ C.

I Take a decreasing sequence e=(ε1, ε2, . . . ) of positive numbers such that∑∞
j=1 εj <∞, and let Nj := N(εj).

I Using this sequence N1,N2, . . . , define A as before, and let

K := FD,2e ⊆ `∞(A) ∼= `∞(N)

be the compact set described in the sublemma. We show that every
X ∈ C embeds isometrically into this K .



Proof of Gromov lemma (end)

I Cover X with N1 balls of radius ε1, say B(xn1 , ε1) where n1 = 1, . . . ,N1.

Next cover each of the balls B(xn1 , ε1) with N2 balls of radius ε2, say
B(xn1n2 , ε2) where n2 = 1, . . . ,N2.

Then cover each of these balls B(xn1n2 , ε2) with N3 balls of radius ε3, say
B(xn1n2n3 , ε3) where n3 = 1, . . . ,N3. Continue like this.

I The centers xa, a∈A of all these balls form a dense set in X . Therefore
the Fréchet-embedding φ : X → `∞(A) defined by

φ(x) =
(
φa(x)

)
a∈A =

(
d(x , xa)

)
a∈A

is isometric.

I Verify that φ(X ) ⊆ FD,2e : Condition (1) holds since d(x , xn1 ) ≤ D, and
condition (2) because of

|d(x , xn1...nknk+1 )− d(x , xn1...nk )| ≤ d(xn1...nknk+1 , xn1...nk ) ≤ 2εk �



Topics

I For non-compact spaces: pointed GH-convergence

I What Gromov does with it: groups of polynomial growth

I Precompact sets of Riemannian manifolds: the Bishop-Gromov
relative volume comparison

I If suitable X and Y are GH-close, then X and Y are diffeomorphic,
homeomorphic, homotopy equivalent; corresponding finiteness
results; Cheeger, Grove, Petersen, Anderson, Perelman et.al.

I Continuity of quantities under GH-limit; Anderson’s estimate on the
harmonic radius of a Riemannian manifold

I Collapsing and fibration theorems: Y fixed, X close to Y , then X
fibers over Y with infranil fiber; Gromov, Fukaya, Yamaguchi

I Structure of limit spaces of Riemannian manifolds under curvature
bounds; Fukaya, Cheeger, Colding et.al.


