Gromov-Hausdorff distance and applications

Patrick Ghanaat Université de Fribourg

Summer school Metric Geometry Les Diablerets, August 25–30, 2013

Felix Hausdorff, 1868–1942

Mikhail Gromov *1943

・ロト ・ 日 ト ・ モ ト ・ モ ト

æ

Sources

- Burago, Burago, Ivanov: A course in metric geometry
- Bridson, Haefliger: Metric spaces of non-positive curvature
- Heinonen: Geometric embeddings of metric spaces
- Gromov: Groups of polynomial growth and expanding maps

- Petersen: Riemannian geometry and several articles
- Hausdorff: Set theory
- Kuratowski: Topology

Metrics and pseudometrics

▶ A pseudometric on a set X is a function $d : X \times X \rightarrow [0, \infty)$ with d(x, x) = 0, d(x, y) = d(y, x), and triangle inequality

$$d(x,z) \leq d(x,y) + d(y,z)$$

A metric is a pseudometric such that d(x, y) = 0 only when x = y.

Remarks

For a pseudometric space (X, d),

$$xRy \iff d(x,y) = 0$$

is an equivalence relation. The pseudometric d induces a metric on the quotient X/R.

- If d is a pseudometric and δ > 0, then d_δ(x, y) = d(x, y) + δ (for x≠y) defines a metric.
- Often useful to admit d : X × X → [0; ∞]. Then d(x, y) < ∞ is an equivalence relation.

Complete, compact, separable

A metric space (X, d) is called

- complete if every Cauchy sequence converges
- compact if every sequence has a convergent subsequence
- separable if there is countable dense subset
- totally bounded (= precompact) if ∀ε > 0 ∃ a finite ε-dense subset X_ε ⊆ X, i.e.

$$X = \bigcup_{x \in X_{\varepsilon}} B_{\varepsilon}(x)$$

Implications

- ▶ separable ⇔ topology has a countable basis
- totally bounded \Rightarrow separable
- ► totally bounded ⇔ every sequence has a Cauchy subsequence
- compact \Leftrightarrow complete and totally bounded

Examples: classical sequence spaces

Examples

- Closed balls in ℓ^2 are complete, separable, not compact.
- Closed balls in ℓ^{∞} are complete, not separable.

Recall definitions: For $1 \le p \le \infty$, ℓ^p is the space of sequences

$$x = (x_k)_{k \in \mathbb{N}} = (x_1, x_2, \dots)$$

of real numbers such that the ℓ^{p} -norm

$$||x||_p = \left\{ egin{array}{c} (\sum_{k=1}^\infty |x_k|^p)^{1/p} \ ext{for} \ p < \infty \ \sup_{k \in \mathbb{N}} |x_k| & ext{for} \ p = \infty \end{array}
ight.$$

is finite. Banach spaces, for p=2 Hilbert. For $p \leq q$,

$$\ell^1 \subset \ell^p \subset \ell^q \subset c_0 \subset c \subset \ell^\infty$$

Fréchet embedding

Theorem. Every separable metric space (X, d) admits an isometric embedding into ℓ^{∞} .

Proof. Choose a dense sequence $(x_k)_{k\in\mathbb{N}}$ in X and define $\phi: X \to \ell^{\infty}$ by

$$\phi(x) = (\phi_k(x))_{k \in \mathbb{N}} = (d(x, x_k) - d(x_k, x_0))_{k \in \mathbb{N}}$$

Then for $x, y \in X$,

$$|\phi_k(x) - \phi_k(y)| = |d(x, x_k) - d(y, x_k)| \le d(x, y)$$

with equality obtained when x_k approaches x or y. Therefore,

$$||\phi(x) - \phi(y)||_{\infty} = d(x, y)$$
. \Box

Exercise. Find a metric space (X, d) consisting of four points that does *not* admit an isometric imbedding into Hilbert space ℓ^2 .

Cauchy completion and precompactness

- Theorem. For every metric space (X, d) there is a *complete* metric space (\hat{X}, \hat{d}) with an isometric embedding $\iota: X \to \hat{X}$ such that $\iota(X)$ is dense in \hat{X} .
 - (\hat{X}, \hat{d}) unique up to isometry, called the completion of (X, d).
 - Construction: Generalize Cantor's definition of the real numbers from the rationals. Define a pseudometric on the set of all Cauchy-sequences in X by

$$d((x_1, x_2, ...), (y_1, y_2, ...)) := \lim_{k \to \infty} d(x_k, y_k).$$

Then define \hat{X} to be the quotient metric space identifying elements with distance zero. Thus points of \hat{X} are equivalence classes

$$\xi = [(x_1, x_2, \dots)]$$

of Cauchy sequences in X, where equivalence means having distance zero.

Theorem. (X, d) precompact $\iff (\hat{X}, \hat{d})$ compact.

Hausdorff distance

For a subset $A \subseteq X$ of a metric space (X, d), the *r*-neighbourhood of A is defined as

$$U_r(A) := \{x \in X \mid \operatorname{dist}(x, A) < r\} = \bigcup_{x \in A} B_r(x)$$

Hausdorff-distance of non-empty subsets $A, B \subseteq X$:

$$d_{H}(A,B) := \inf\{r > 0 \mid A \subseteq U_{r}(B) \text{ and } B \subseteq U_{r}(A)\}$$
$$= \max\{\sup_{a \in A} \operatorname{dist}(a,B), \sup_{b \in B} \operatorname{dist}(b,A)\}$$

Properties

► d_H satisfies triangle inequality, is a pseudometric on the set of bounded subsets of X.

- $\blacktriangleright d_H(A,B) = d_H(A,\overline{B})$
- $\blacktriangleright d_H(A,B) = 0 \iff \overline{A} = \overline{B}$

•
$$d_H(\{a\},\{b\}) = d(a,b)$$

Hausdorff compactness theorem

Let $\mathfrak{C}(X)$ be the set of all *non-empty closed bounded* subsets of X, equipped with the metric d_H .

Theorem

- If X is complete, then $\mathfrak{C}(X)$ is complete (Hahn 1932).
- If X is totally bounded, then $\mathfrak{C}(X)$ is totally bounded.
- If X is compact, then $\mathfrak{C}(X)$ is compact (Hausdorff, Blaschke).

Remark

Same if $\mathfrak{C}(X)$ denotes the set of all non-empty *compact* subsets.

History

Blaschke selection theorem (1916). Every d_H -bounded sequence of compact convex sets $A_k \subseteq \mathbb{R}^n$ subconverges to a compact convex set $A \subseteq \mathbb{R}^n$.

Proof. There is a compact X ⊂ ℝⁿ that contains every A_k. Apply previous theorem to obtain a subsequence converging to some A ∈ 𝔅(X) and check that compact Hausdorff-limits of convex sets are convex.

Hausdorff compactness: proof

- ▶ $\mathfrak{C}(X)$ is complete: Let $A_k \in \mathfrak{C}(X)$ be a Cauchy sequence. Define

$$A := F \limsup A_k = \bigcap_{n=1}^{\infty} \overline{A_n \cup A_{n+1} \cup \dots}$$

Claim. $A \in \mathfrak{C}(X)$, and $d_H(A_n, A) \to 0$ as $n \to \infty$.

Remark : The set Flim sup A_k is called the upper closed limit of the sequence (A_k)_{k∈ℕ}. An alternative description is

$$\begin{aligned} F \limsup A_k &= \{x \in X \mid \forall \varepsilon > 0 : B_{\varepsilon}(x) \cap A_k \neq \emptyset \text{ for } \infty \text{ many } k\} \\ &= \{ \text{accumulation points of sequences } a_n \in A_n \} \end{aligned}$$

Proof of claim

▶ $A \subseteq U_{\varepsilon}(A_n)$ for all large $n : a \in A$ implies that the $\varepsilon/2$ -ball around a meets infinitely many of the A_k , and so

$$a \in U_{\varepsilon/2}(A_k)$$

for these k. Since the sequence is Cauchy, we have $A_k \subseteq U_{\varepsilon/2}(A_n)$ for all large k and n. Hence

$$a \in U_{\varepsilon/2}(U_{\varepsilon/2}(A_n)) \subseteq U_{\varepsilon}(A_n)$$
.

• $A_n \subseteq U_{\varepsilon}(A)$ for all large n: If $x \in A_n$ for sufficiently large n, then there is a subsequence $n = n_1 < n_2 < \ldots$ and a sequence of points $a_{n_k} \in A_{n_k}$ starting at $a_1 = x$ such that $d(a_{n_k}, a_{n_{k+1}}) < \varepsilon/2^{k+1}$. The sequence $(a_{n_k})_{k \in \mathbb{N}}$ is Cauchy, hence converges to some $a \in X$, and by definition of A we have $a \in A$. By the triangle inequality,

$$d(x, a) \leq \sum_{k=1}^{\infty} d(a_{n_k}, a_{n_{k+1}}) < \varepsilon.$$

(日) (同) (三) (三) (三) (○) (○)

Description of Hausdorff limits: topological limits

Recall the upper closed limit of the sequence $(A_k)_{k \in \mathbb{N}}$:

- ▶ Flim sup $A_k = \{x \in X \mid \forall \varepsilon > 0 : B_{\varepsilon}(x) \cap A_k \neq \emptyset \text{ for } \infty \text{ many } k\}$
- The lower closed limit is defined as
 Flim inf A_k = {x ∈ X | ∀ε > 0 : B_ε(x) ∩ A_k ≠ Ø for nearly all k}
- The closed limit is said to exist if both are equal :

 $F \lim A_k := F \lim \inf A_k = F \lim \sup A_k$.

Theorem

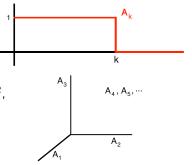
Consider $A_k, A \in \mathfrak{C}(X)$.

- If $d_H(A_k, A) \rightarrow 0$, then $F \lim A_k$ exists and is equal to A.
- If X is compact and Flim A_k exists, then $d_H(A_k, A) \rightarrow 0$.

Examples

(X, d) euclidean plane,
 Flim A_k exists, but sequence not Hausdorff convergent:

► (X, d) unit ball in Hilbert space l², Flim A_k exists, but sequence not Hausdorff convergent:



 Menger sponge Source: Wikipedia

Gromov-Hausdorff distance

Definition. The Gromov-Hausdorff distance between metric spaces X and Y is defined as

$$d_{GH}(X,Y) = \inf_{Z} \inf_{X',Y'} d_{H}^{Z}(X',Y')$$

where the infimum $\in [0, \infty]$ is taken over all metric spaces Z and all subspaces X', Y' of Z that are isometric to X, Y.

Comments

- d_H^Z denotes the Hausdorff distance in the metric space (Z, d^Z) .
- X', Y' carry the metrics obtained by restriction of d^Z .
- ▶ Distance depends only on the *isometry classes* of X and Y.
- Reformulate:

$$d_{GH}(X,Y) = \inf_{Z} \inf_{\phi,\psi} d_{H}^{Z}(\phi(X),\psi(Y))$$

where the infimum is over all isometric embeddings $\phi: X \to Z$ and $\psi: Y \to Z$.

◆□ → ◆昼 → ◆臣 → ◆臣 → ◆ ● ◆ ◆ ● ◆

Examples

- If X_ε is an ε-dense subset of X with the induced metric, then d_{GH}(X, X_ε) < ε. So totally bounded metric spaces admit approximation by finite metric spaces.
- If $\{p\}$ is a one-point space, then $d_{GH}(X, \{p\}) = \frac{1}{2} \operatorname{diam}(X)$, where

$$\operatorname{diam}(X) = \sup_{x,y \in X} d(x,y)$$

Proof: Take $Z = X \sqcup \{p\}$ and extend the given metric from X to Z by setting $d(x, p) := \frac{1}{2} \operatorname{diam}(X)$.

- If diameters are finite, then
 - $rac{1}{2} \left| \mathsf{diam}(X) \mathsf{diam}(Y)
 ight| \leq d_{GH}(X,Y) \leq rac{1}{2} \max\{\mathsf{diam}(X),\mathsf{diam}(Y)\}$.

Lipschitz-close implies GH-close

A map $F : X \to Y$ between metric spaces is called *L*-bi-lipschitz if $\frac{1}{L} d(x, x') \le d(Fx, Fx') \le L d(x, x').$

Claim. If $F : X \to Y$ is $(1+\varepsilon)$ -bi-lipschitz and bijective, then $d_{GH}(X, Y) \le \varepsilon \max\{\operatorname{diam}(X), \operatorname{diam}(Y)\}.$

Proof. Can assume diameters are finite. Take $Z = X \sqcup Y$ and extend the metrics d^X and d^Y to a metric(!) on Z by setting

$$d(x,y) := \inf_{a \in X} \left(d^{X}(x,a) + d^{Y}(y,Fa) \right) + \varepsilon C$$

where $C = \max\{\operatorname{diam}(X), \operatorname{diam}(Y)\}$. Given $y \in Y$, we show that $x = F^{-1}y \in X$ has distance at most εC from y: For every $a \in X$

$$d(x,y) \leq d^{X}(F^{-1}y,a) + d^{Y}(y,Fa) + \varepsilon C$$
.

Choose $a = F^{-1}y$ to obtain $d(x, y) \le \varepsilon C$.

Alternative definition 1

Proposition

$$d_{GH}(X,Y) = \inf_{d} d_{H}^{X \sqcup Y}(X,Y)$$

where $X \sqcup Y$ is the disjoint union and the infimum is taken over all admissible metrics d on $X \sqcup Y$, i.e. metrics that extend d^X and d^Y .

Proof

- ▶ If $\widehat{d_{GH}}(X, Y)$ denotes the right hand side, then $d_{GH} \leq \widehat{d_{GH}}$ because the infimum for d_{GH} is extended over a larger set.
- Conversely given $\varepsilon > 0$, choose Z, X' and Y' such that

$$d_{H}^{Z}(X',Y') \leq d_{GH}(X,Y) + \varepsilon. \qquad (*)$$

▶ If X', Y' disjoint, restrict the metric of Z to the union $X' \cup Y'$ to get

$$\widehat{d_{GH}}(X,Y) = \widehat{d_{GH}}(X',Y') \le d_{GH}(X,Y) + \varepsilon.$$
(**)

If X', Y' are not disjoint, replace Z, X', Y' by Z×[0,1], X'×{0}, Y'×{ε}.
 Obtain equations (*) and (**) with ε replaced by 2ε.

d_{GH} is a metric

Claim

$$d_{GH}(X,Z) \leq d_{GH}(X,Y) + d_{GH}(Y,Z)$$

Proof. Take admissible metrics $d^{X \sqcup Y}$ and $d^{Y \sqcup Z}$ and, for $\delta > 0$, define an admissible metric $d^{X \sqcup Z}$ on the disjoint union $X \sqcup Z$ by

$$d^{X \sqcup Z}(x,z) = \inf_{y \in Y} \left(d^{X \sqcup Y}(x,y) + d^{Y \sqcup Z}(y,z) \right) + \delta$$

for $x \in X$ and $z \in Z$. Then

$$d_H^{X\sqcup Z}(X,Z) \leq d_H^{X\sqcup Y}(X,Y) + d_H^{Y\sqcup Z}(Y,Z) + \delta$$
.

Now take the infimum over all admissible metrics $d^{X \sqcup Y}$ and $d^{Y \sqcup Z}$, and finally let $\delta \to 0$. \Box

Proposition. X, Y compact with $d_{GH}(X, Y) = 0$, then X, Y are isometric. Notation. Let \mathfrak{M} denote the set of isometry classes of compact metric spaces $\neq \emptyset$. Then (\mathfrak{M}, d_{GH}) is a metric space.

d_{GH} is a metric

Proof of proposition. Take a sequence of admissible metrics d_k on $X \sqcup Y$ such that the Hausdorff distance between X and Y with respect to d_k is $\leq 1/k$. Then there are (discontinuous) maps $I_k : X \to Y$ and $J_k : Y \to X$ with

$$d_k(x, I_k(x)) \leq \frac{1}{k}$$
 and $d_k(y, J_k(y)) \leq \frac{1}{k}$.

The triangle inequality for d_k then implies

$$\begin{array}{rcl} d(I_k(x_1), I_k(x_2)) &\leq & \frac{2}{k} + d(x_1, x_2) \\ d(J_k(y_1), J_k(y_2)) &\leq & \frac{2}{k} + d(y_1, y_2) \\ d(x, J_k \circ I_k(x)) &\leq & \frac{2}{k} \\ d(y, I_k \circ J_k(y)) &\leq & \frac{2}{k} \end{array}$$

An Arzela-Ascoli argument yields limits $I: X \to Y$ and $J: Y \to X$ for $k \to \infty$. (Obtain $I: X \to Y$ first on a countable dense subset $A \subseteq X$ using a diagonal argument and the compactness of Y, then extend from A to X. Similarly for J.) Then I and J are the required isometries.

Example. Two proper metric spaces with $d_{GH}(X, Y) = 0$ that are not isometric.

Both X and Y are metric graphs obtained from the real line by attaching segments of suitable length at all integer points.

- For X attach a segment of length $|\sin(m)|$ to the point $m \in \mathbb{Z}$.
- For Y attach a segment of length $|\sin(m+\frac{1}{2})|$ to the point $m \in \mathbb{Z}$.
- ► To see that d_{GH}(X, Y) ≤ ε for every ε > 0, observe that X and Y are isometrically embedded into the grid

$$Z = \{(x, y) \in \mathbb{R}^2 \mid x \text{ or } y \in \mathbb{Z}\}$$

equipped with its path metric. A suitable integer translation in the x-direction will move X into an ε -neighborhood of Y.

Alternative definition 2

Proposition. For separable metric spaces X, Y,

$$d_{GH}(X,Y) = \inf_{\phi,\psi} d_H^{\infty}(\phi(X),\psi(Y))$$

where the infimum is taken over all isometric embeddings $\phi: X \to \ell^{\infty}$ and $\psi: Y \to \ell^{\infty}$, and d_{H}^{∞} is the Hausdorff distance in ℓ^{∞} .

Proof. The inequality \leq is clear. Conversely given $\varepsilon > 0$, choose an admissible metric *d* on $Z = X \sqcup Y$ such that

$$d_H^Z(X,Y) \leq d_{GH}(X,Y) + \varepsilon$$
.

Since (Z, d) is also separable, there is an isometric embedding $\iota: Z \to \ell^{\infty}$, and we obtain isometric embeddings

$$\phi: X o X \sqcup Y o \ell^{\infty} \qquad \psi: Y o X \sqcup Y o \ell^{\infty}$$

Then

$$d^{\infty}_{H}(\phi(X),\psi(Y))=d^{Z}_{H}(X,Y)\leq d_{GH}(X,Y)+\varepsilon . \quad \Box$$

Correspondences

Definition. Consider metric spaces X and Y.

A correspondence (or surjective relation) between X and Y is a subset

$$\mathcal{R} \subseteq X imes Y$$

such that the projections $\pi_X : X \times Y \to X$ and $\pi_Y : X \times Y \to Y$ remain surjective when restricted to \mathcal{R} .

- Example: If $f : X \to Y$ is a surjective map, then the graph $\mathcal{R} = \{(x, f(x)) \mid x \in X\}$ is a correspondence.
- The distortion of a correspondence is defined as

$$\operatorname{dis}(\mathcal{R}) = \sup_{(x,y),(x',y')\in\mathcal{R}} |d^{Y}(y,y') - d^{X}(x,x')|$$

Remark: If dis(R)=0, then R is the graph of an isometry.

Alternative definition 3

Theorem

$$d_{GH}(X,Y) = rac{1}{2} \inf_{\mathcal{R}} \mathsf{dis}(\mathcal{R})$$

where the infimum is taken over all correspondences $\mathcal{R} \subseteq X \times Y$.

Proof

• $d_{GH}(X, Y) \geq \frac{1}{2} \inf_{\mathcal{R}} \operatorname{dis}(\mathcal{R})$:

If $r > d_{GH}(X, Y)$, then there is a metric space (Z, d) containing X and Y such that the Hausdorff distance in Z satisfies $d_H(X, Y) < r$. Then

$$\mathcal{R} := \{ (x, y) \mid d(x, y) < r \}$$

is a correspondence, and

$$rac{1}{2}\operatorname{\mathsf{dis}}(\mathcal{R}) < r$$

because for $(x, y), (x', y') \in \mathcal{R}$

$$|d(y, y') - d(x, x')| \le d(x, y) + d(x', y') < 2r$$

Alternative definition 3

• $d_{GH}(X,Y) \leq \frac{1}{2} \inf_{\mathcal{R}} \operatorname{dis}(\mathcal{R})$:

Let \mathcal{R} be a correspondence and $r := \frac{1}{2} \operatorname{dis}(\mathcal{R})$. We may assume r > 0. Define an admissible metric(!) on $Z = X \sqcup Y$ by

$$d(x,y) = \inf_{(x',y')\in\mathcal{R}} \left(d(x,x') + r + d(y',y) \right).$$

Then the Hausdorff distance of $X, Y \subseteq Z$ is

$$d_{\mathcal{H}}(X,Y) \leq r = rac{1}{2}\operatorname{dis}(\mathcal{R})$$

Given $x \in X$, choose $y \in Y$ such that $(x, y) \in \mathcal{R}$. Then

$$d(x,y) \leq d(x,x) + r + d(y,y) = r,$$

and so the distance from x to Y is $\leq r$. \Box

ε -isometries

Definition. A map $f : X \rightarrow Y$ is called an ε -isometry if its distortion

$$\mathsf{dis}(f) := \sup_{x,x' \in X} |d^{Y}(fx, fx') - d^{X}(x, x')| \le \varepsilon$$

and if f(X) is ε -dense in Y.

Proposition

- If $d_{GH}(X, Y) < \varepsilon$, then there is a 2ε -isometry $f: X \to Y$.
- If there is an ε -isometry $f: X \to Y$, then $d_{GH}(X, Y) \leq \frac{3}{2}\varepsilon$.

Proof. Use the previous theorem. If $d_{GH}(X, Y) < \varepsilon$, take a correspondence with dis $(\mathcal{R}) < 2\varepsilon$. For each x choose y such that $(x, y) \in \mathcal{R}$ and define f(x) = y. Then f is a 2ε -isometry.

Given an ε -isometry $f : X \to Y$, define $\mathcal{R} := \{(x, y) \mid d(fx, y) < \varepsilon\}$. This is a correspondence with dis $(\mathcal{R}) \leq 3\varepsilon$.

GH-limits

Definition. A sequence of metric spaces X_k converges to X in the Gromov-Hausdorff sense (short: *GH*-converges to X) if $d_{GH}(X_k, X) \rightarrow 0$ as $k \rightarrow \infty$. Notation:

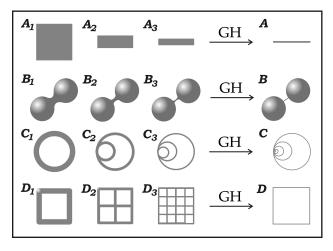
$$X_k \stackrel{GH}{\longrightarrow} X \quad (k \!
ightarrow \! \infty)$$

Remarks

- ▶ If X is compact, then X is unique up to isometry.
- Example: Every compact X is a GH-limit of a sequence of finite metric spaces.

- ► Hausdorff convergent implies GH-convergent.
- ▶ Assume X_k , X compact, and $X_k \xrightarrow{GH} X$. Then there are $X'_k, X' \subseteq \ell^\infty$ isometric to X_k, X such that $X'_k \xrightarrow{d^\infty_H} X'$. Proof later.

GH-convergence: pictures



Source: Christina Sormani, How Riemannian manifolds converge

Examples: bounded curvature collaps

- Circles; flat tori; $M \times S^1$
- The Hopf fibration $S^3 \xrightarrow{h} \mathbb{C}P^1 = S^2$

is the quotient map of the free isometric S^1 -action

$$e^{i\theta}(z_1,z_2)=(e^{i\theta}z_1,e^{i\theta}z_2)$$

on the standard sphere $S^3 \subseteq \mathbb{C}^2$. This is a Riemannian submersion for a metric of constant curvature =4 on $\mathbb{C}P^1$.

• Take cyclic groups $C_k \subseteq S^1$ of order k. Then

$$S^3/C_k \xrightarrow{GH} \mathbb{C}P^1$$
 as $k \to \infty$

Berger spheres: Define S³_ε = (S³, g_ε), where the Riemannian metric g_ε is obtained by multiplying the standard Riemannian metric of S³ with a factor ε > 0 in the fiber direction. Then

$$S_{\varepsilon}^3 \xrightarrow{GH} \mathbb{C}P^1$$
 as $\varepsilon \to 0$.

(日) (同) (三) (三) (三) (○) (○)

Examples: Heisenberg group

The 3-dimensional Heisenberg group $\mathbb H$ is the set of all

$$\left(egin{array}{cccc} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{array}
ight), ext{ where } x,y,z\in \mathbb{R}\,.$$

The subset $\Gamma \subseteq \mathbb{H}$ of integral matrices is a discrete subgroup. Consider the compact manifold $M = \Gamma \setminus \mathbb{H}$.

1. For $\varepsilon > 0$, take basis for left invariant 1-forms

$$\omega^1 = \varepsilon \, dx$$
 $\omega^2 = \varepsilon \, dy$ $\omega^3 = \varepsilon^3 (dz - xdy)$

Define Riemannian metric so that this is an ON-basis:

$$g_{arepsilon} = \omega^1 \otimes \omega^1 + \omega^2 \otimes \omega^2 + \omega^3 \otimes \omega^3$$

This is left invariant, and $g_{\varepsilon} \rightarrow 0$ as $\varepsilon \rightarrow 0$. Conclusion:

$$(M,g_{\varepsilon}) \stackrel{GH}{\longrightarrow} \text{point} \quad \text{as } \varepsilon \!
ightarrow \! 0.$$

Examples: Heisenberg (continued)

► The curvature in this example remains bounded: The Maurer-Cartan equations $d\omega^k = c_{ij}^k \omega^i \wedge \omega^j$ are $d\omega^1 = d\omega^2 = 0$ $d\omega^3 = -\varepsilon \omega^1 \wedge \omega^2$

For the curvature tensor R one then calculates $||R|| \le 6||d\omega|| = 6\varepsilon$. So curvature $\rightarrow 0$ as $\varepsilon \rightarrow 0$.

This works for general nilpotent Lie groups G: choose basis for g* such that c^k_{ij} = 0 unless i, j < k. These metrics descend to nilmanifold quotients Γ\G; and to compact infranil-quotients Λ\G after averaging over Λ/Γ.

2. Now consider the Riemannian metrics g_{ε}' given by the ON-basis $\omega^1 = dx$ $\omega^2 = dy$ $\omega^3 = \frac{1}{\varepsilon}(dz - xdy)$.

For $\varepsilon \to 0$, (M, g'_{ε}) converges to a metric space X which is M equipped with the subriemannian metric defined by ω^1, ω^2 on the plane field ker ω^3 . Curvatures go to $\pm \infty$.

Properties inherited by GH-limits

Proposition. Suppose $X_k \xrightarrow{GH} Y$. If each X_k is/has ..., then Y is/has ...

- separable
- totally bounded
- ▶ a proper space if Y is complete
- a length space if Y is complete
- ▶ a proper geodesic space if Y is complete
- diameter $\leq D$ (in fact diam $X_k \rightarrow \operatorname{diam} Y$)
- ▶ properties of the form F(d₁₁, d₁₂,..., d_{k-1,k}) ≥ 0 or =0, where d_{ij} = d(x_i, x_j), and where F is continuous, e.g.
 - δ -hyperbolic
 - CBB^{κ} (\Leftrightarrow (1+3)^{κ}-condition)
 - CAT^{κ} (\Leftrightarrow (2+2)^{κ}-condition)
- complete geodesic with curv $\geq \kappa$
- ▶ NOT: complete geodesic with curv $\leq \kappa$ (counterexample: hyperboloids \rightarrow double-cone)

Proofs: totally bounded

- For CBB^κ, CAT^κ and curv see the lectures of Stephanie Alexander at this summer school.
- Totally bounded. Pick a finite ε-dense subset in some X_k GH-close to Y, then move it to Y via a correspondence. Details:
 - Given ε > 0, fix k so large that d_{GH}(X_k, Y) < ε/4. Then there is a correspondence R ⊆ X_k × Y with distortion dis(R) < ε/2. Take a finite ε/2-dense subset X'_k ⊂ X_k. For each x' ∈ X'_k choose a y' ∈ Y such that (x', y') ∈ R, and let Y' be the set of all such y'.
 - We claim that Y' is ε-dense in Y:
 - Given y∈Y, find x∈X_k such that (x, y)∈R, and then x' ∈ X'_k at distance < ε/2 from x. For the y'∈Y' that corresponds to this x' we obtain

$$egin{array}{rcl} d(y,y') &\leq & |d(y,y')-d(x,x')|+d(x,x')\ &\leq & \operatorname{dis}(\mathcal{R})+d(x,x')\ &<& arepsilon\,. \end{array}$$

Proper. A metric space X is called proper if all closed balls

$$\bar{B}_r(x) := \{d(\cdot, x) \le r\}$$

are compact.

- Given a ball $\overline{B}_r(y) \subseteq Y$, there are $x_k \in X_k$ corresponding to y, and then for radii $r_k \searrow r$ the balls $\overline{B}_{r_k}(x_k)$ Hausdorff-converge to $\overline{B}_r(y)$.
- Since all B
 _{rk}(xk) are totally bounded, so is the limit B
 _r(y). Since Y is complete, B
 _r(y) is complete, hence compact.

Proofs: length space

Length space. A length space is a metric space X such that d(x, x') is the infimal length of curves joining x and x'. Recall the approximate mid point condition:

For all $x, x' \in X$ and $\varepsilon > 0$, there is an ε -midpoint $m \in X$, i.e.

$$\max\{d(x,m),d(m,x')\} \leq \frac{1}{2}d(x,x') + \varepsilon.$$

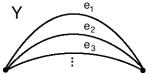
Then

- length space \implies approximate mid point condition
- is true for complete metric spaces
- Verify this condition for Y: Given y, y' ∈ Y and ε > 0, fix k so large that there is a correspondence with small distortion between X_k and Y. Take points x_k, x'_k ∈ X_k corresponding to y, y' and find an ε-midpoint m_k ∈ X_k. Finally, let m∈ Y be a point corresponding to m_k. Then m is a 3ε-midpoint for y, y'. Since Y is assumed complete, it is a length space.

Proofs: proper geodesic

- Proper and geodesic. By definition, a geodesic space is a length space such all pairs x, x' can be joined by a curve of length = d(x, x'). So every X_k is a proper length space, and so is the limit Y. By the Hopf-Rinow-theorem, every proper length space is geodesic.
- Example. A complete limit Y of geodesic spaces X_k that is not geodesic: Y is the metric graph constructed by joining two vertices with a sequence of edges e_n of length 1+1/n for n=1,2,... X_k is obtained from Y by replacing the edge e_k by an edge of

 Λ_k is obtained from r by replacing the edge e_k by an edge of length 1.



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Packing and covering

Definition. For a metric space X and $\varepsilon > 0$ define the covering and packing numbers by

 $\operatorname{cov}(X, \varepsilon) = \min\{n \mid X \text{ can be covered by } n \text{ closed } \varepsilon\text{-balls}\}$ $\operatorname{pack}(X, \varepsilon) = \sup\{n \mid X \text{ contains } n \text{ disjoint } \frac{\varepsilon}{2}\text{-balls}\}.$

Lemma 1. $cov(X, \varepsilon) \leq pack(X, \varepsilon)$.

Proof. If $B_{\varepsilon/2}(x_1), \ldots, B_{\varepsilon/2}(x_n)$ is a maximal disjoint set of $\varepsilon/2$ -balls, then the balls $\overline{B}_{\varepsilon}(x_1), \ldots, \overline{B}_{\varepsilon}(x_n)$ cover X. \Box

Lemma 2. If $d_{GH}(X, Y) \le \delta$, then $\operatorname{cov}(X, \varepsilon) \ge \operatorname{cov}(Y, \varepsilon + 2\delta)$ $\operatorname{pack}(X, \varepsilon) \ge \operatorname{pack}(Y, \varepsilon + 2\delta)$

Proof. Use a correspondence with distortion $2\delta'$, $\delta' > \delta$.

Totally bounded sets in \mathfrak{M}

Theorem. For a subset $\mathcal{C} \subseteq \mathfrak{M}$, the following are equivalent:

- (1) There is a constant D > 0 and a function $N : (0, \infty) \to \mathbb{N}$ such that diam $(X) \le D$ and pack $(X, \varepsilon) \le N(\varepsilon)$ for all $X \in \mathcal{C}$.
- (2) Same as (1), but replace $pack(X, \varepsilon)$ by $cov(X, \varepsilon)$.
- (3) C is totally bounded with respect to d_{GH} .

Proof

(3) \Rightarrow (1) Recall that (3) means $\forall \delta > 0 \exists$ finite δ -dense subset in C. Consider such a subset $C' \subseteq C$ and let D' and $N'(\varepsilon)$ be upper bounds for diam(\cdot) and pack(\cdot, ε) on C'.

Given $X \in C$, take $C \in C'$ such that $d_{GH}(X, C) < \delta$. Then

$$\operatorname{diam}(X) \leq \operatorname{diam}(C) + 2\delta \leq D' + 2\delta$$

 $\operatorname{pack}(X, \varepsilon) \leq \operatorname{pack}(C, \varepsilon - 2\delta) \leq N'(\varepsilon - 2\delta).$

 $(1) \Rightarrow (2)$ by Lemma 1.

(2) \Rightarrow (3) Fix $\varepsilon > 0$.

▶ The set \mathcal{F} of finite metric spaces with at most $N(\varepsilon)$ elements and diameters $\leq D$ is totally bounded with respect to d_{GH} .

Proof. With each $F \in \mathcal{F}$ that has $N \leq N(\varepsilon)$ elements associate "the" $N \times N$ matrix $\Delta(F) = (d_{ij})$ of pairwise distances of all the points in F. These matrices have entries bounded by D, so they form a totally bounded set in $\mathbb{R}^{N \times N}$. If $\Delta(F)$ and $\Delta(F')$ are δ -close, then there is a correspondence (in fact a bijection) between F and F' with distortion $< \delta$, and so $d_{GH}(F, F') \leq \delta$.

• This set \mathcal{F} is ε -dense for \mathcal{C} .

Proof. Given $X \in C$, cover it by $\leq N(\varepsilon)$ balls of radius ε . Let F be the set of centers of these balls. Then $F \in F$, and $d_{GH}(X, F) \leq \varepsilon$.

► This works for every ε > 0. Conclude that every sequence in C contains a Cauchy subsequence (diagonal argument).

Completeness of ${\mathfrak M}$

Lemma (Gromov). For every totally bounded subset $C \subseteq \mathfrak{M}$ there is a compact subset $K \subseteq \ell^{\infty}$ such that every $X \in C$ admits an isometric embedding into K.

As a corollary we obtain:

Theorem. The metric space (\mathfrak{M}, d_{GH}) is complete.

Proof

Apply the Lemma to the set of terms $\{X_k \mid k \in \mathbb{N}\} \subseteq \mathfrak{M}$ of a given Cauchy sequence. The lemma says that the X_k have isometric copies X'_k contained in some compact $K \subseteq \ell^\infty$. The Hausdorff compactness theorem applied to K provides a subsequence X'_{k_j} that d^∞_H -converges to a compact $X \subseteq K$. This implies that $X_{k_j} \xrightarrow{GH} X$. Since the sequence was Cauchy, $X_k \xrightarrow{GH} X$. \Box

The space $\ell^{\infty}(A)$

It remains to prove Gromov's lemma. Instead of embeddings into $\ell^{\infty} = \ell^{\infty}(\mathbb{N})$, we construct embeddings into $\ell^{\infty}(A)$ for some other countably infinite set A. This is the Banach space of all bounded functions $f : A \to \mathbb{R}$ with the sup-norm. It is isometric to $\ell^{\infty}(\mathbb{N})$.

Definition. Fix a sequence $\mathbf{N} = (N_1, N_2, ...)$ of positive integers and consider the sets

$$A_{1} = \{(n_{1}) \mid n_{1} = 1, \dots, N_{1}\}$$

$$A_{2} = \{(n_{1}, n_{2}) \mid n_{1} = 1, \dots, N_{1}; n_{2} = 1, \dots, N_{2}\}$$

$$A_{3} = \{(n_{1}, n_{2}, n_{3}) \mid n_{1} = 1, \dots, N_{1}; n_{2} = 1, \dots, N_{2}; n_{3} = 1, \dots, N_{3}\}$$
etc., and then

$$A = \bigcup_{j=1}^{\infty} A_j$$

The elements $f \in \ell^{\infty}(A)$ are bounded families of numbers

$$(f(a))_{a\in A} = (f_a)_{a\in A}$$

(日) (同) (三) (三) (三) (○) (○)

where the indices a are of the form $a = (n_1, \ldots, n_k)$. We write $f(n_1, \ldots, n_k)$ instead of $f((n_1, \ldots, n_k))$.

Compact sets in $\ell^{\infty}(A)$

Sublemma. Let D > 0, and let $\mathbf{e} = (\varepsilon_1, \varepsilon_2, ...)$ be a sequence of positive numbers such that $\sum_{j=1}^{\infty} \varepsilon_j < \infty$. Consider the subset $F = F_{D,\mathbf{e}} \subseteq \ell^{\infty}(A)$ defined by the following conditions:

(1)
$$0 \le f(n_1) \le D$$
 for $n_1 = 1, ..., N_1$
(2) $|f(n_1, ..., n_k, n_{k+1}) - f(n_1, ..., n_k)| \le \varepsilon_k$

for all k and all $(n_1, \ldots, n_{k+1}) \in A$. Then F is compact.

Proof

F is closed in $\ell^{\infty}(A)$, hence complete. Therefore it suffices to show that *F* is totally bounded. Note that we have finite dimensional subspaces

$$\ell^\infty(A_1\cup\cdots\cup A_k)\hookrightarrow \ell^\infty(A)$$
 .

- $F \cap \ell^{\infty}(A_1 \cup \cdots \cup A_k)$ is compact.
- ▶ By condition (2), *F* is contained in the $\hat{\varepsilon}_k$ -neighbourhood of $F \cap \ell^{\infty}(A_1 \cup \cdots \cup A_k)$, where $\hat{\varepsilon}_k = \varepsilon_k + \varepsilon_{k+1} + \cdots \to 0$ as $k \to \infty$.
- ► Using this, every sequence in F has a Cauchy subsequence (diagonal sequence argument). So F is totally bounded.

Proof of Gromov lemma

Recall the statement: For every totally bounded $C \subseteq \mathfrak{M}$ there is a compact $K \subseteq \ell^{\infty}(\mathbb{N})$ such that every $X \in C$ admits an isometric embedding into K.

Proof

- ▶ Choose D > 0 and a function $N : (0, \infty) \to \mathbb{N}$ such that diam $(X) \le D$ and $cov(X, \varepsilon) \le N(\varepsilon)$ for all $X \in C$.
- ▶ Take a decreasing sequence $\mathbf{e} = (\varepsilon_1, \varepsilon_2, ...)$ of positive numbers such that $\sum_{j=1}^{\infty} \varepsilon_j < \infty$, and let $N_j := N(\varepsilon_j)$.
- Using this sequence N_1, N_2, \ldots , define A as before, and let

$$K := F_{D,2\mathbf{e}} \subseteq \ell^{\infty}(A) \cong \ell^{\infty}(\mathbb{N})$$

(日) (同) (三) (三) (三) (○) (○)

be the compact set described in the sublemma. We show that every $X \in C$ embeds isometrically into this K.

Proof of Gromov lemma (end)

• Cover X with N_1 balls of radius ε_1 , say $B(x_{n_1}, \varepsilon_1)$ where $n_1 = 1, \dots, N_1$.

Next cover each of the balls $B(x_{n_1}, \varepsilon_1)$ with N_2 balls of radius ε_2 , say $B(x_{n_1n_2}, \varepsilon_2)$ where $n_2 = 1, ..., N_2$.

Then cover each of these balls $B(x_{n_1n_2}, \varepsilon_2)$ with N_3 balls of radius ε_3 , say $B(x_{n_1n_2n_3}, \varepsilon_3)$ where $n_3 = 1, \ldots, N_3$. Continue like this.

The centers x_a, a∈A of all these balls form a dense set in X. Therefore the Fréchet-embedding φ : X → ℓ[∞](A) defined by

$$\phi(x) = (\phi_a(x))_{a \in A} = (d(x, x_a))_{a \in A}$$

is isometric.

▶ Verify that $\phi(X) \subseteq F_{D,2e}$: Condition (1) holds since $d(x, x_{n_1}) \leq D$, and condition (2) because of

$$|d(x, x_{n_1\dots n_k n_{k+1}}) - d(x, x_{n_1\dots n_k})| \le d(x_{n_1\dots n_k n_{k+1}}, x_{n_1\dots n_k}) \le 2\varepsilon_k \quad \Box$$

Topics

- For non-compact spaces: pointed GH-convergence
- ▶ What Gromov does with it: groups of polynomial growth
- Precompact sets of Riemannian manifolds: the Bishop-Gromov relative volume comparison
- If suitable X and Y are GH-close, then X and Y are diffeomorphic, homeomorphic, homotopy equivalent; corresponding finiteness results; Cheeger, Grove, Petersen, Anderson, Perelman et.al.
- Continuity of quantities under GH-limit; Anderson's estimate on the harmonic radius of a Riemannian manifold
- Collapsing and fibration theorems: Y fixed, X close to Y, then X fibers over Y with infranil fiber; Gromov, Fukaya, Yamaguchi
- Structure of limit spaces of Riemannian manifolds under curvature bounds; Fukaya, Cheeger, Colding et.al.