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Metrics and pseudometrics

> A pseudometric on a set X is a function d : X x X — [0; 00) with
d(x,x)=0, d(x,y)=d(y, x), and triangle inequality

d(x,z) <d(x,y) +d(y,z)
» A metric is a pseudometric such that d(x,y)=0 only when x=y.

Remarks
e For a pseudometric space (X, d),

xRy <= d(x,y)=0
is an equivalence relation. The pseudometric d induces a metric

on the quotient X/R.

e If d is a pseudometric and & > 0O, then ds(x,y)=d(x,y) + 6
(for x#y) defines a metric.

e Often useful to admit d : X x X — [0;00]. Then d(x,y) < oo is
an equivalence relation.



Complete, compact, separable

A metric space (X, d) is called

» complete if every Cauchy sequence converges

» compact if every sequence has a convergent subsequence
> separable if there is countable dense subset
| 4

totally bounded (= precompact) if Ve > 0 3 a finite e-dense subset
X.C X, ie.

X=]J B(x)

xEXe
Implications
> separable < topology has a countable basis
totally bounded = separable
totally bounded < every sequence has a Cauchy subsequence

vV v v

compact < complete and totally bounded



Examples: classical sequence spaces

Examples
» Closed balls in ¢? are complete, separable, not compact.

» Closed balls in £°° are complete, not separable.

Recall definitions: For 1 < p < oo, #P is the space of sequences

x = (Xk)ken = (X1, %2, .. .)

of real numbers such that the ¢P-norm

1
]| _{ (Onzy P /P for p < oo
p=
SUPken |X«| for p= o0

is finite. Banach spaces, for p=2 Hilbert. For p < q,
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Fréchet embedding

Theorem. Every separable metric space (X, d) admits an isometric
embedding into £°°.

Proof. Choose a dense sequence (xi)ken in X and define ¢ : X — £°° by

B(x) = (6k(x)) ey = (d0x; %) — d(xk,%0)) , oo
Then for x,y € X,

|0x(x) = ox(¥)] = d(x, %) — d(y, )| < d(x,y)

with equality obtained when xx approaches x or y. Therefore,

lo(x) = ¢(W)llee = d(x,y) . O

Exercise. Find a metric space (X, d) consisting of four points that does not
admit an isometric imbedding into Hilbert space ¢2.



Cauchy completion and precompactness

Theorem. For every metric space (X, d) there is a complete metric space
(X, d) with an isometric embedding +: X — X such that ¢(X)
is dense in X.

» (X, d) unique up to isometry, called the completion of (X, d).

» Construction: Generalize Cantor's definition of the real numbers from the
rationals. Define a pseudometric on the set of all Cauchy-sequences in X

by
d(Oasxe - ) (s yz, - 2)) o= limd(xe, yi) -

Then define X to be the quotient metric space identifying elements with
distance zero. Thus points of X are equivalence classes

§= [(X17X27 s )]

of Cauchy sequences in X, where equivalence means having distance zero.

Theorem. (X, d) precompact <= (X, d) compact.



Hausdorff distance

For a subset A C X of a metric space (X, d), the r-neighbourhood of A
is defined as

Up(A) == {x € X | dist(x,A) < r} = | B.(x)

xEA

Hausdorff-distance of non-empty subsets A, B C X :

du(A,B) = inf{r>0]AC U,(B) and B C U,(A)}
= max{ sup dist(a, B), sup dist(b, A) }
acA beB
Properties

» dy satisfies triangle inequality, is a pseudometric on the set of
bounded subsets of X.

» dy(A, B) = dy(A, B)
> dH(A,B)IZO <~ A=B8B
> du({a}, {b}) = d(a, b)



Hausdorff compactness theorem

Let €(X) be the set of all non-empty closed bounded subsets of X,
equipped with the metric dy.
Theorem

> If X is complete, then €(X) is complete (Hahn 1932).

» If X is totally bounded, then €(X) is totally bounded.

» If X is compact, then €(X) is compact (Hausdorff, Blaschke).

Remark

» Same if €(X) denotes the set of all non-empty compact subsets.

History

Blaschke selection theorem (1916). Every dy-bounded sequence of compact
convex sets Ay C R" subconverges to a compact convex set A C R".

> Proof. There is a compact X C R” that contains every Ax. Apply
previous theorem to obtain a subsequence converging to some A € €(X)
and check that compact Hausdorff-limits of convex sets are convex.



Hausdorff compactness: proof

» €(X) is totally bounded: Given € > 0, choose a finite subset X. C X
that is e-dense in X. Then the power set B(X.) is an e-dense finite
subset of €(X).

> &(X) is complete: Let Ax € €(X) be a Cauchy sequence. Define
o0
A:= Flimsup A, = ﬂ A, UA 1 U...
n=1
Claim. A € €(X), and dy(A,, A) — 0 as n — 0.
» Remark : The set Flimsup A is called the upper closed limit of the
sequence (Ax)ken. An alternative description is

FlimsupAx = {x€ X |Ve>0: B:(x) N Ax # 0 for co many k}

= {accumulation points of sequences a, € A,}



Proof of claim

> A C U.(Ap) for all large n: a € A implies that the /2-ball around a
meets infinitely many of the Ak, and so

ac UE/Q(A[()

for these k. Since the sequence is Cauchy, we have Ax C U, /»(An) for all
large k and n. Hence

a € Uz/2(Uz/2(An)) € U:(An).

> A, C U:(A) for all large n: If x € A, for sufficiently large n, then there is
a subsequence n = n; < n2 < ... and a sequence of points a,, € A,
starting at a, = x such that d(an,, an,,,) < /2™ . The sequence
(an, )ken is Cauchy, hence converges to some a € X, and by definition of
A we have a € A. By the triangle inequality,

oo
X 3 § E ank73nk+1 <eE. O
k=1



Description of Hausdorff limits: topological limits

Recall the upper closed limit of the sequence (Ax)ken :

> Flimsup Ay = {x € X | Ve > 0: B:(x) N Ax # ) for co many k}

» The lower closed limit is defined as
Fliminf Ay = {x € X | Ve > 0: B.(x) N Ak # 0 for nearly all k}

» The closed limit is said to exist if both are equal :
Flim A := Fliminf Ax = Flimsup A .

Theorem

Consider Ak, A € €(X).
> If dy(Ak, A) — 0, then Flim A, exists and is equal to A.
> If X is compact and Flim Ay exists, then dy(Ak, A) — 0.



Examples

» (X, d) euclidean plane,
Flim A, exists, but sequence
not Hausdorff convergent:

» (X, d) unit ball in Hilbert space ¢2,
Flim Ay exists, but sequence not
Hausdorff convergent:

» Menger sponge
Source: Wikipedia




Gromov-Hausdorff distance

Definition. The Gromov-Hausdorff distance between metric spaces X and
Y is defined as
_ . V4 / /
don(X, Y) =inf inf di (X', Y7)

where the infimum € [0, 00] is taken over all metric spaces Z and all
subspaces X', Y’ of Z that are isometric to X, Y.

Comments

> dZ denotes the Hausdorff distance in the metric space (Z, dZ).
> X', Y’ carry the metrics obtained by restriction of d.
» Distance depends only on the isometry classes of X and Y.
» Reformulate:
den(X, Y) = inf inf dii(6(X), ¥(Y))

where the infimum is over all isometric embeddings ¢ : X — Z and

P:Y = Z.



Examples

» If X, is an e-dense subset of X with the induced metric, then
der(X, X.) < . So totally bounded metric spaces admit
approximation by finite metric spaces.

> If {p} is a one-point space, then dgy(X,{p})= 73 diam(X), where

diam(X)= sup d(x,y)
x,yeX

Proof: Take Z=X LI {p} and extend the
given metric from X to Z by setting 1 !
d(x, p):=13 diam(X).

» |f diameters are finite, then 1

1 |diam(X) — diam(Y)| < dgn(X, Y) < 3 max{diam(X),diam(Y)}.



Lipschitz-close implies GH-close

A map F: X— Y between metric spaces is called L-bi-lipschitz if

%d(x,x') < d(Fx, FX') < Ld(x,x').

Claim. If F: X—Y is (1+¢)-bi-lipschitz and bijective, then
deH(X,Y) < e max{diam(X), diam(Y)}.

Proof. Can assume diameters are finite. Take Z=X U Y and extend the
metrics d* and d"¥ to a metric(!) on Z by setting

S X Y
d(x,y) = ;2}‘( (d*(x,a) +d'(y, Fa)) + eC
where C=max{diam(X),diam(Y)}. Given y €Y, we show that
x=F 'y e X has distance at most eC from y: For every ac X
d(x,y) < d*(F7'y,a) + d"(y, Fa) +<C.

Choose a=F 'y to obtain d(x,y) <eC. O



Alternative definition 1

P iti
roposition den(X,Y) = ir!,f dX9Y (X, Y)

where X LI Y is the disjoint union and the infimum is taken over all
admissible metrics d on X LU Y, i.e. metrics that extend dX and dY.

Proof

> If d/G;(X, Y') denotes the right hand side, then dgy < den because the
infimum for dgy is extended over a larger set.

» Conversely given € > 0, choose Z, X’ and Y’ such that
di (X', Y') < dan(X,Y) +¢. (%)
> If X, Y’ disjoint, restrict the metric of Z to the union X’ U Y’ to get
den(X,Y) = den(X',Y') < den(X,Y) + €. (+)

> If X', Y’ are not disjoint, replace Z, X", Y' by Zx[0,1], X'x {0}, Y'x{e}.
Obtain equations (x) and (x*) with ¢ replaced by 2e. [



dgH is @ metric

Claim
den(X, Z) < den(X,Y) + den(Y, 2)

Proof. Take admissible metrics d*~Y and dY"4 and, for § > 0, define an

admissible metric d*“Z on the disjoint union X U Z by

dX\.lZ(

x,z) = (dxuy(x,y) + dyuz(y7 z)) +4

inf

yey

forxe X and z€ Z. Then
diPA (X, Z) < dEPT (X, Y) 4+ di (Y, Z) + 6.

Now take the infimum over all admissible metrics d*“Y and dY“?, and
finally let 6 - 0. O

Proposition. X,Y compact with dgy(X, Y)=0, then X,Y are isometric.

Notation. Let 9t denote the set of isometry classes of compact metric
spaces # (). Then (90, dgy) is a metric space.



dgH is @ metric

Proof of proposition. Take a sequence of admissible metrics dx on X UY
such that the Hausdorff distance between X and Y with respect to dx is
< 1/k. Then there are (discontinuous) maps It : X—Y and Ji : Y = X
with

di(x, Ik(x)) < % and  di(y, k() < &

The triangle inequality for di then implies

d(/k(Xl) Ik(X2

) 2 +d(a,x)
d(J(y1), Je(y2))

)

)

2 +dn,y)
d(x, Jko Ik(x
d(y, Ik OJk(

ININ N IA

xIN XN

An Arzela-Ascoli argument yields limits / : X—Y and J: Y — X for
k—o00. (Obtain / : X =Y first on a countable dense subset A C X using
a diagonal argument and the compactness of Y, then extend from A to X.
Similarly for J.) Then I and J are the required isometries. [



Counterexample

Example. Two proper metric spaces with dgy(X, Y) = 0 that are not
isometric.

» Both X and Y are metric graphs obtained
from the real line by attaching segments of | | | | , |

suitable length at all integer points.

> For X attach a segment of length |sin(m)| to the point m € Z.
> For Y attach a segment of length |sin(m + )| to the point m € Z.

> To see that den(X, Y) < € for every € > 0, observe that X and Y are
isometrically embedded into the grid

Z={(x,y) €ER*|xory€cZ}

equipped with its path metric. A suitable integer translation in the
x-direction will move X into an e-neighborhood of Y.



Alternative definition 2

Proposition. For separable metric spaces X, Y,
der(X. Y) = inf dF (6(X). %(Y))

where the infimum is taken over all isometric embeddings ¢ : X — £°°
and ¥ : Y — £°°, and diF is the Hausdorff distance in £°°.

Proof. The inequality < is clear. Conversely given € > 0, choose an
admissible metric d on Z = X U Y such that
di(X,Y) < deu(X,Y)+e.

Since (Z, d) is also separable, there is an isometric embedding
t: Z — £°°, and we obtain isometric embeddings

P X = XUY 0 Yo XUY— 2,

Then oo (6(X), 0(Y)) = d(X, ¥) < den(X, Y) +2. O



Correspondences

Definition. Consider metric spaces X and Y.

» A correspondence (or surjective relation) between X and Y is a
subset
RCXxY

such that the projections mx : X x Y - X and 7ty : X XY = Y
remain surjective when restricted to R.

e Example: If f : X — Y is a surjective map, then the graph
R = {(x,f(x)) | x € X} is a correspondence.

» The distortion of a correspondence is defined as

dis(R) = sup 1dY(y,y") — dX(x,x")]
(x.¥),(x" .y )ER

e Remark: If dis(R)=0, then R is the graph of an isometry.



Alternative definition 3

Theorem 1
deu(X,Y) = 5 |%f dis(R)

where the infimum is taken over all correspondences R C X x Y.

Proof
> don(X,Y) > 3§ infr dis(R) :

If r > der(X,Y), then there is a metric space (Z, d) containing X and Y
such that the Hausdorff distance in Z satisfies dy(X, Y) < r. Then

R :={(xy) ld(x,y) <r}

is a correspondence, and 1

because for (x,y), (x',y')ER

ld(y,y")—d(x,x)| < d(x,y) +d(x',y") < 2r.



Alternative definition 3

> dGH(X, Y) < infr dIS(R) :

1
2

Let R be a correspondence and r := 3 dis(R). We may assume r > 0.
Define an admissible metric(!) on Z=XU Y by

dixy) = inf (dO, X)) +r+d(y',y)) -
Then the Hausdorff distance of X, Y C Z is
du(X,Y) < r— %dis(R) :
Given x € X, choose y € Y such that (x,y) € R. Then
d(x,y) <d(x,x)+r+d(y,y)=r,

and so the distance from xtoY is <r. [J



e-isometries

Definition. A map f : X — Y is called an e-isometry if its distortion

dis(f) := sup |d"(fx, &) —d*(x,x)| <e

x,x'eX

and if f(X) is e-dense in Y.

Proposition
> If deu(X,Y) < g, then there is a 2e-isometry f : X =Y.
> If there is an e-isometry f : X = Y, then dgy(X,Y) < %5.

Proof. Use the previous theorem. If der(X, Y) < ¢, take a
correspondence with dis(R) < 2e. For each x choose y such that
(x,y) € R and define f(x)=y. Then f is a 2c-isometry.

Given an e-isometry f : X =Y, define R := {(x,y) | d(fx,y) < e}.
This is a correspondence with dis(R) < 3s. [



GH-limits

Definition. A sequence of metric spaces Xy converges to X in the
Gromov-Hausdorff sense (short: GH-converges to X) if dey(Xk, X)—0
as k— oc0. Notation:

Xe & X (k—o0)
Remarks
» If X is compact, then X is unique up to isometry.
» Example: Every compact X is a GH-limit of a sequence of finite
metric spaces.
» Hausdorff convergent implies GH-convergent.

» Assume Xj, X compact, and X ﬂ X. Then there are

. . di°
X/, X" C £ isometric to Xk, X such that X, -~ X'.
Proof later.



GH-convergence: pictures

Ay Az A

. e _CH
PP
0O =
D GH

9

"
D

D, D3

Source: Christina Sormani, How Riemannian manifolds converge



Examples: bounded curvature collaps

» Circles; flat tori; M x St
» The Hopf fibration 3 M opl=g2

is the quotient map of the free isometric S*-action

0

ei0(21722) = (eigzl, e’ 2)

on the standard sphere S3 C C2. This is a Riemannian submersion
for a metric of constant curvature =4 on CPL.

o Take cyclic groups C, C S* of order k. Then
S*/C 5 CPY as k—oo

o Berger spheres: Define S2=(S5 g.), where the Riemannian metric g.
is obtained by multiplying the standard Riemannian metric of S°
with a factor € > 0 in the fiber direction. Then

s? CHoept as e—0.



Examples: Heisenberg group

The 3-dimensional Heisenberg group H is the set of all

1
0 , Where x,y,z € R.
0

O = X
=< N

The subset ' C H of integral matrices is a discrete
subgroup. Consider the compact manifold M = N\ H.

1. For £ >0, take basis for left invariant 1-forms
wh=edx Wwi=cedy w3 = 3(dz—xdy)
Define Riemannian metric so that this is an ON-basis:
g = ' ®w + w0 +i® W
This is left invariant, and g. —0 as €—0. Conclusion:

(M, g-) GH, point as €—0.



Examples: Heisenberg (continued)

» The curvature in this example remains bounded: The Maurer-Cartan
equations dwk:cijfw’/\ w’ are
dwl=dw?=0 dwd= —cwrA w?
For the curvature tensor R one then calculates ||R|| <6||dw||=6¢.
So curvature — 0 as ¢ — 0.

e This works for general nilpotent Lie groups G: choose basis for g* such
that cé‘- =0 unless i, j< k. These metrics descend to nilmanifold quotients
M\ G; and to compact infranil-quotients A\ G after averaging over A/T.

2. Now consider the Riemannian metrics g/ given by the ON-basis
w=dx w'=dy w’=1(dz—xdy).
For e =0, (M, gl) converges to a metric space X which is M

equipped with the subriemannian metric defined by w?!,w? on the
plane field ker w?. Curvatures go to +oo.



Properties inherited by GH-limits

Proposition. Suppose Xk Sy If each X is/has ..., then Y is/has ...

separable

totally bounded

a proper space — if Y'is complete

a length space — if Yis complete

a proper geodesic space — if Y is complete

diameter < D (in fact diam X, — diamY)

vV VvV VvV v v .Y

properties of the form F(di1, da, ..., dk—1,) > 0 or =0,
where d;j = d(xi, xj), and where F is continuous, e.g.

> d-hyperbolic

» CBB" (< (1+43)"-condition)

» CAT" (< (242)"-condition)
» complete geodesic with curv > &

» NOT: complete geodesic with curv < k (counterexample:
hyperboloids — double-cone)



Proofs: totally bounded

» For CBB"™, CAT" and curv see the lectures of Stephanie Alexander
at this summer school.

» Totally bounded. Pick a finite e-dense subset in some X; GH-close
to Y, then move it to Y via a correspondence. Details:

e Given £ > 0, fix k so large that den(Xk, Y) < /4. Then there is a
correspondence R C X X Y with distortion dis(R) < /2. Take a
finite ¢/2-dense subset X, C Xx. For each x’ € X| choose a y'€ Y
such that (x’,y’)€R, and let Y’ be the set of all such y'.

e We claim that Y’ is e-dense in Y:

e Given y€Y, find x€ Xk such that (x,y)€R, and then x’ € X at
distance < /2 from x. For the y’ € Y’ that corresponds to this x’
we obtain

d(y,y") < ld(y,y") —d(x,x)| + d(x,x")
< dis(R) + d(x, x")
<

€. O



Proofs: proper

» Proper. A metric space X is called proper if all closed balls
B (x) :={d(-,x) < r}
are compact.

e Given a ball B,(y) C Y, there are xx € X corresponding to y, and
then for radii r \, r the balls B,, (xx) Hausdorff-converge to B.(y).

e Since all é,k(fk) are totally bounded, so is the limit B,(y). Since Y
is complete, B:(y) is complete, hence compact. [



Proofs: length space

> Length space. A length space is a metric space X such that d(x,x’)
is the infimal length of curves joining x and x’. Recall the
approximate mid point condition:

For all x,x’€X and € > 0, there is an e-midpoint me X, i.e.

max{d(x,m),d(m,x')} < 1d(x,x') +¢.
Then
> length space = approximate mid point condition

» <= is true for complete metric spaces

o Verify this condition for Y: Given y,y’ €Y and € > 0, fix k so large
that there is a correspondence with small distortion between X and
Y. Take points x, x; € Xk corresponding to y,y’ and find an
e-midpoint my € Xi. Finally, let me Y be a point corresponding to
mg. Then m is a 3e-midpoint for y,y’. Since Y is assumed
complete, it is a length space. [J



Proofs: proper geodesic

» Proper and geodesic. By definition, a geodesic space is a length
space such all pairs x, x’ can be joined by a curve of length
= d(x,x’). So every Xy is a proper length space, and so is the limit
Y. By the Hopf-Rinow-theorem, every proper length space is
geodesic. [

» Example. A complete limit Y of geodesic spaces X, that is not
geodesic: Y is the metric graph constructed by joining two vertices
with a sequence of edges e, of length 1—&—% forn=1,2,...

X is obtained from Y by replacing the edge ex by an edge of
length 1.




Packing and covering

Definition. For a metric space X and € > 0 define the covering and
packing numbers by

cov(X,e) = min{ n| X can be covered by n closed e-balls}

pack(X,e) = sup{ n | X contains n disjoint 5-balls}.

Lemma 1. cov(X,¢) < pack(X,¢).

Proof. If B./>(x1), ..., Bzj2(xa) is a maximal disjoint set of ¢/2-balls,
then the balls B-(x1), ..., Bs(xa) cover X. [

Lemma 2. If dgu(X,Y) <4, then
cov(X,e) > cov(Y,e + 2)
pack(X,¢e) > pack(Y,e + 24)

Proof. Use a correspondence with distortion 2§’, §' > 6. O



Totally bounded sets in 9t

Theorem. For a subset C C 90, the following are equivalent:

(1) There is a constant D > 0 and a function N : (0,00) — N such that
diam(X) < D and pack(X,¢e) < N(e) for all X e C.

(2) Same as (1), but replace pack(X,e) by cov(X,e).
(3) C is totally bounded with respect to dgp.

Proof

(3)=(1) Recall that (3) means V§ > 0 3 finite -dense subset in C.
Consider such a subset C' C C and let D’ and N’(e) be upper bounds for
diam(-) and pack(-,€) on C'.

Given X € C, take C € C’ such that dgn(X, C) < §. Then

diam(X) < diam(C)+2§ < D'+2§
pack(X,e) < pack(C,e—28) < N'(e—26).

(1)=(2) by Lemma 1.



Totally bounded sets in 9t

(2)=(3) Fix ¢ > 0.

> The set F of finite metric spaces with at most N(e) elements and
diameters < D is totally bounded with respect to dgn.

Proof. With each F € F that has N < N(e) elements associate “the”
N x N matrix A(F) = (dj) of pairwise distances of all the points in
F. These matrices have entries bounded by D, so they form a totally
bounded set in RV*V. If A(F) and A(F’) are d-close, then there is a
correspondence (in fact a bijection) between F and F’ with
distortion < 6, and so den(F, F') < 6.

» This set F is e-dense for C.

Proof. Given X € C, cover it by < N(e) balls of radius . Let F be
the set of centers of these balls. Then Fe€F, and deu(X, F) <e.

> This works for every € > 0. Conclude that every sequence in C
contains a Cauchy subsequence (diagonal argument). [



Completeness of I

Lemma (Gromov). For every totally bounded subset C C 9t there is a
compact subset K C £*° such that every X € C admits an isometric
embedding into K.

As a corollary we obtain:
Theorem. The metric space (9, dgy) is complete.

Proof

Apply the Lemma to the set of terms { Xk | k € N} C 91 of a given
Cauchy sequence. The lemma says that the X have isometric copies X}
contained in some compact K C ¢°°. The Hausdorff compactness theorem
applied to K provides a subsequence X,ij that d°-converges to a compact

X C K. This implies that X LM X Since the sequence was Cauchy,
X x. 0



The space (*°(A)

It remains to prove Gromov's lemma. Instead of embeddings into {*°=/¢>(N),
we construct embeddings into £°°(A) for some other countably infinite set A.
This is the Banach space of all bounded functions f : A — R with the
sup-norm. It is isometric to £*°(N).

Definition. Fix a sequence N = (N, N, ... ) of positive integers and consider
the sets

Ar={(m) | m=1,..., N}

A2 = {(n17n2) ‘ n1:1,...,N1; ng:l,...,NQ}

A3 = {(nl,ng,n3) I n1:1,...,N1; nz:l,...,NQ; n3:1,...,N3}

etc., and then

oo
A= Aj

J=1

The elements f € £°°(A) are bounded families of numbers
(f(a))aca = (f2)aca

where the indices a are of the form a = (n1,..., nc). We write f(ny,..., ng)
instead of f((n1,...,n)).



Compact sets in (>°(A)

Sublemma. Let D > 0, and let e=(e1,¢2,...) be a sequence of positive
numbers such that 377, ; < co. Consider the subset F=Fp.. C £>(A)
defined by the following conditions:

(1) 0<f(m)<D for m=1,...,Ny
(2) |f(ne,. ..M, mgr) — F(na, .o, ne)| < ex
for all k and all (ni,...,nkt1) €EA. Then F is compact.

Proof
F is closed in £°°(A), hence complete. Therefore it suffices to show that
F is totally bounded. Note that we have finite dimensional subspaces
LP°(ALU - U Ag) = £°(A).
» FNLP(ALU---UA() is compact.

» By condition (2), F is contained in the &;-neighbourhood of
FNeX(ALU---UA), where & = e + k41 + -+ — 0 as k— 0.

> Using this, every sequence in F has a Cauchy subsequence (diagonal
sequence argument). So F is totally bounded. [



Proof of Gromov lemma

Recall the statement: For every totally bounded C C 9 there is a compact
K C ¢£°°(N) such that every X € C admits an isometric embedding into K.

Proof

» Choose D > 0 and a function N : (0, c0) — N such that diam(X) <D and
cov(X,e)<N(e) for all Xe C.

> Take a decreasing sequence e= (g1, 2,. .. ) of positive numbers such that
Yo7 ei < oo, and let N := N(g)).

» Using this sequence Ni, Na, ..., define A as before, and let
K := Fppe C £°(A) =2 ¢£>(N)

be the compact set described in the sublemma. We show that every
X € C embeds isometrically into this K.



Proof of Gromov lemma (end)

> Cover X with Ny balls of radius €1, say B(xn,,£1) where np =1,..., Ni.

Next cover each of the balls B(xn,,e1) with N> balls of radius e, say
B(Xniny,€2) where np =1,..., N,.

Then cover each of these balls B(xn,n,,£2) with N3z balls of radius €3, say

B(Xnynyny, €3) where n3 = 1,..., N3. Continue like this.

» The centers x,, a€ A of all these balls form a dense set in X. Therefore
the Fréchet-embedding ¢ : X — £°°(A) defined by

$(x) = (6s(x)) yep = (d(x:%)) 1
is isometric.

> Verify that ¢(X) C Fp 2. : Condition (1) holds since d(x,xn,) < D, and
condition (2) because of

|d(X, Xny . ogmy) — d (X, Xoy )| < d(Xny gy > Xoyomy) < 26 O



Topics

» For non-compact spaces: pointed GH-convergence

What Gromov does with it: groups of polynomial growth

Precompact sets of Riemannian manifolds: the Bishop-Gromov
relative volume comparison

If suitable X and Y are GH-close, then X and Y are diffeomorphic,
homeomorphic, homotopy equivalent; corresponding finiteness
results; Cheeger, Grove, Petersen, Anderson, Perelman et.al.
Continuity of quantities under GH-limit; Anderson’s estimate on the
harmonic radius of a Riemannian manifold

Collapsing and fibration theorems: Y fixed, X close to Y, then X
fibers over Y with infranil fiber; Gromov, Fukaya, Yamaguchi
Structure of limit spaces of Riemannian manifolds under curvature
bounds; Fukaya, Cheeger, Colding et.al.



