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Introduction

The following pages are the notes I took attending the mini-course in “Gromov hyperbolic spaces” given
by Prof. V. Schroeder during the summer school 2013 in Les Diablerets.

Tobias Berner, tobias.berner@math.uzh.ch



1 Basic Definitions and Motivation

1.1. Basic Definitions

Notations:

« (X, d) metric space

* eyl = d(z,y).
Definition 1.1 f: X — X'is

. isometric, if
lf(@)f(y)l = eyl VYa,yeX.

« homothetic, if 3\ > 0 such that

[f(@)f (W)l = Ayl Va,ye X.
« A geodesic in X is a homothetic map 7 : I - X, where I c R some interval (where (I,d.(z,y) =
|z = y1)-
« X is geodesic, if Vo,y € X 3v:[0,1] > X geodesic with v(0) = z and y(1) = y.
Also ([0, 1]) is also called a geodesic. We denote this (not necessarily unique) geodesic with zy.

1.2. Quasi-Isometries

Motivated by geometric group theory (Cayley, Dehn).

Definition 1.2 Let G a finitely generated group, and S c G a finite set of generators closed under inversion,
thatis S = 571
Define the Cayley-graph T'(G, S) by

« the set of vertices is G
« there is an edge between g and ¢’ iff g'g ™! € S.

OnT'(G,S) we can define a metric dg called word-metric by ds(g,g’) is the length of the minimal edge
path between ¢ and ¢'. This metric can be extended to the whole graph by identifying each edge with the
interval [0, 1].

This makes (I'(G, S),ds) to a geodesic metric space.
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1.3 Stability of quasi-geodesics

Figure 1.1: Cayley graph of Z with S = {+1}.
Figure 1.2: Cayley graph of Z with S = {2, £3}.

Example 1.3 Consider (Z, {+1}) and (Z, {+2, £3})

Example 1.4 (Z,{+2,+3})

Let G a finitely generated group and consider the two generating sets S and S’. Let a > 1 such that
|i]s <a and [b]s<a

where h,h' € G.
Then the identity map
id : (G7ds) - (G,dsf)

is bi-lipschitz, that is

1
;\gg'ls' <lgg'ls < algg’|s:

Definition 1.5 [ : X — X' is quasi-isometric if 3a > 1, b > 0 such that Vz,y

eyl —b < 1f() ()] < eyl +

f X — X'is called a quasi-isometry, if f is quasi-isometric and 3¢ > 0 such that dg (f(z), X") < ¢, where
dy is the Hausdorff-distance. Quasi-isometry is an equivalence relation.

Corollary 1.6 So, two Cayley-graphs I'(G,S) and T'(G, S") are quasi-isometric.

1.3. Stability of quasi-geodesics

Definition 1.7 A quasi-geodesicin X is a quasi-isometric map «y : [ — X. v is called an (a, b)-quasi-geodesic
where a, b are the bounding-constants.

Example 1.8 Consider the logarithmic spiral givenby v : (0, 00) — R?, where v(¢) := t-(cos(Int),sin(Int)).
v is a quasi-geodesic, because |y(¢)| = ¢, v ()] = V2.
So

1

ﬂlv(t)v(S)l <[t = sl <y (®)y(s)l-

Theorem 1.9 (Morse) Leta > 1, b > 0, then there exists H := H(a,b) > 0 such that for every (a,b)-quasi-
geodesic, f : [0,¢] — H? the Hausdorff-distance d (f([0,£]),c) < H where c is a geodesic from f(0) to

f0).



Basic Definitions and Motivation

Figure 1.3: The logarithmic spiral

Figure 1.4: Stability of quasi-geodesics

Lemma 1.10 f: [a, 3] > H?, d.(f(c)) = de(f(8)) = M’ then L > cosh(M")-d where L = length(f[a,5])

and d,. is the distance to c.

Proor f:[0,A] - H quasi-geodesic, so there are a,b such that
1 ! / /
—[t=t[=b<[f(O)f(t)| < alt -]+ b
a

forall ¢,t" € [0, A].

Figure 1.5



1.3 Stability of quasi-geodesics

Figure 1.6

Step 1 One can assume without loss of generality that

-t -b< O FE] <@l (0)

for some a’ := a’(a,b).

Step 2 M :=maxd.(f(t)),and M’ := M/(3a?).
Let L := length( f[fa,51)

1. then by the previous lemma L > cosh(M") - d.

2. L>2(M-M')> %M >4a®M'.

3. By (0) we have L < a|B - a| < a®(|f(a) f(B)| +b) <a®*(2M' +d +b).
4. So we have d > 2M' - b.

Assume M’ > b then by 4 we have

So L < 4a*d by 3.
Hence cosh(M')-d < L < 4a*d.

So M’ < Function(a), and M’ < F(a,b). [



2 Hyperbolic spaces

2.1. 0-hyperbolicity
Definition 2.1 Let X a metric space, and § > 0. Then X is d-hyperbolic if Vz,y, z, w one has
|zy| + |zw| < max{|zz| + |yw|, |xw| + [yz} + 26 d-inequality

X is called Gromov-hyperbolic, if 36 > 0, such that X is §-hyperbolic.

Figure 2.1: 6-hyperbolicity

Example 2.2 Consider a tree: The three numbers are
(a+c+d)+(b+c+e), (a+c+e)+(b+c+d), (a+bd)+(d+e).
So this is 0-hyperbolic.

Figure 2.2: Tree example

Example 2.3 R? is not hyperbolic: For this look at a square of side length n. The three side pairs get the
numbers

2n, 2n, 2/2n.



2.1 §-hyperbolicity

Figure 2.4: Equiradial points and incircle

Definition 2.4 Let X a metric space, z,y, z,w € X then we define

1
(Ylz)s = §(|xy\ +xz| - |yz|). Gromov product

(Yl2)

Figure 2.5: In a tripod the equiradial points coincide

Geometric definition (for metric spaces) incircle of the triangle.

Lemma 2.5 Let z,y, z a triangle in some metric space, then there are unique points u € [y, z], v € [z, 2],
w € [z,y], such that |zw| = |zv|, |yw| = |yu| and |zv| = |zu|. These points are called the equiradial points.

5

Lemma 2.6 Let X a metric space, and 6 > 0. X is 6-hyperbolic, if Yo, z,y, z € X, the following holds
(2ly)o 2 min{(x]2)o, (y|2)o}0.

Definition 2.7 a,b, c € R is called a §-triple if the two smaller differ by at most 4.

Let 0,z,y, z € X: such that the two larger of the three numbers

lox| +lyz],  loy| + |22, |w2] +[y|



Hyperbolic spaces

Figure 2.6: Equiradial points for ideal triangle in H>

<4

—0 o—> R

Figure 2.7: 0-tripel

differ by at most 24.
If we look now at the negative numbers

—loxl = lyz|,  —loy| - [zal, —fwz| - yz]

the two smaller differ by 2.
By adding |ox| + |oy| + |0z| to every entry we get

(loyl +loz| = ly21),  (lox| +|oz| - |zz]),  (loyl +[oz] = |yz])

which again the smaller two differ by atmost 26.
By multiplying these numbers with 1/2 we get that the smallest two Gromov-products

(y|z)07 (‘T|Z)Oa (I|y)o
differ by at most 4.

Proposition 2.8 Let X a geodesic space, then X is Gromov-hyperbolic <> 36" > 0 such that if z,y, z is a
triangle and w, v, w equiradial points a € xv, b € zw, |xa| = |xb|, then |ad| < 4.

Y

(Wl2)o = (ylr)o

Figure 2.8
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2.1 §-hyperbolicity

Figure 2.9: If |za| = |xb| < (y|2)a then |ab| < 6.

ProoF Argument for “=":
Study for a geodesic v : [0,¢] — X parametrized by arclength, the distance to z: that is

fite ()l
Consider (x|y)o, (z[7(£))o, (7(¢)|y)o- Note that (v(¢)|y), = t and (z|y), = . Denote o’ := (z|y(t)),. By

d-hyperbolicity we have |a —a/| < § ...

Theorem 2.10 (Stability of quasi-geodesics) Let X §-hyperbolic and geodesic. a > 1, b > 0. Then there exists
D = D(a,b) such that: ifv:[0,¢] - X is an (a,b)-quasi-geodesic, and c is the geodesich from ~(0) to (),
then

dg(v,¢) < D.
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3 Boundary at infinity

Do H? = S*

x

Figure 3.1
We chose a basepoint 0 € X.
Definition 3.1 A sequence (;);en converges at infinity if

hm ($i|xj)o = 00.
oo

i~
Definition 3.2 If (z;), (y;) are sequences which converge at infinity, then

() ~ (yi) = iljiinoo(myi)o = 00

Lemma 3.3 ~ is an equivalence relation.
ProoF The problematic part is the transitivity: (z;) ~ (y;) ~ (zi) = (x;) ~ (21).
(z;) ~ (yj): VKANVi,j > N: (z5]y;)0 > K analgously (y;,zx) > K.
As (z;ly;), (y;|zr) and (z;]z)) is a d-tripel we have (z;|z;) > K - 0.
We define the boundary at infinity as
000X = {[(x;)] ] (x;)sen is a sequence converging at infinity}.

Let X be CAT ™.

12



Figure 3.2

Theorem 3.5 (Bourdon) X CAT ™, 0 ¢ X, then

po(,y) = e e
defines a metric on 05, X .

Example 3.6 H?. Let 7,y € 0., H? = S' € R?, then
1
—(@lv)o _ 2|y —
e = Ly,

e~ (@Wo = Tim, ., (e™21)1/2 = sin(¥/2)

Figure 3.3

Lemma 3.7 0,0’ € X, then p,, p,» are Mébius equivalent, i.e. they define the same crossratio.

Proor We have to show
po(.9)po(w) _ po(,y)po (2,)
Po(,2)po(y,w)  por(,2)por (Y, w)
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Boundary at infinity

Note that
Po(,y)po(z,w) _ Jim e
Po(T,2)po(y, w) i—eo
=lime

1—>00

=1/2:[(Jox;|+|oyil=|ziyi|+|ozi|+|ow;|~[ziwi]) = (lox ;| +|ozi ||z s [+|oy:| +|ow;|~|y;wi])]

—1/2:[-lwiyil-lziwil+|zizi |+ lyi wal]
So the crossratio is independent of the chosen basepoint. [

3.1. Mobius structure

Let Z a set (Z = 00 X).

Definition 3.9 (extended metric) d : Z x Z — [0, co], which has at most one point at infinity, that is
IO(d) ¢ Z, #Q(d) € {0,1}, w € Q(d), x € Z ~ Q(d), then d(w, z) = oo.
Q= {(z,y,z,w) € Z*, but (v,y,r,y) € Q but (v,y,r,r) ¢ Q (no entry may appear three times).

Definition 3.10 crtg: Q - ¥ c RP?
crta(z,y, 2, w) = (lzyllzw] : [zzllyw] : |zw|lyz]).

Y={(a:b:¢)]a,b,chave same sign}.
(1:0:0)
(1:1:0) (1:0:1)
(0:1:0) (0:1:1) (0:0:1)
Figure 3.4: &

Definition 3.11 f: X — X' is Mobius, if
1. f injective

2. crtg (f(x),..., f(w)) =crtg(x,...,w).

Z,d,d" extended metrics on Z, d Mdbius equivalent to d' iff id : (Z,d) —» (Z,d") is Mobius.s

A M@bius structure on Z is an equivalence class of Mobius equivalent metrics. (Z, M) is called a Mébius
space, where M = [d].

Doo X, X is CAT ™, then (9o X, [po]) is canonical Mébius structure on 0o, X.

W € O X ( )

W Po\T; Y

N e P e
This is also a metric on 0 X and Q(p,,) = {w}.

[pw] = [po] does not depend on o.
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3.1 Mobius structure

Example 3.12 H", w € ., H"
+ (0ooH™, pym) isometric to R"*1 U {oo}.

¢ (0eH", p,) is isometric to (S™!, 1/2chordal metric).

Example 3.13 CH?, -4 < K < -1. (0CH?,p,) isometric to Heisenberggroup (Karanyi-Reinmann

gauge).

Back to Gromov hyperbolic spaces.
First difficulty: define (z|y), for points z,y € 0o X

li s
zi_})l(rgi_)y(xzwz)o

does not necessarily exist. See the following example:

Y
Ya —v4
Y3 — y5
LY
hn

[ [ [ [—-

Example 3.14 ¢ 1 72 %3 T4

Figure 3.5: Gromov products need not converge
We have (2;]y;)o =0 and (z}|y}), = 2.
So we define it
(z|y)o == inf lminf(z;|y;)o-

sequences Fi~T
Yi—y

Then 2, Y, z € Do X: (2]Y)0, (%|2)0, (y|2), is a d-tripel.
The second difficulty is, that p, := e~ (*¥)o is not a metric. But it is a K-quasimetric.

Definition 3.15 p is a K -quasimetric, if

p(z,2) < K -max{p(x,y),p(y,2)}.

a b ¢

R

Figure 3.6: In a K -quasimetric the quotient of the larger two numbers is boundet by K. That is c/b < K
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Boundary at infinity

Construction by Frink: If p is a K-quasimetric with K < 2, then there exists a metric p with

1

—p<p<op.
5P SP<P

n
ple.y) = }Jjﬁ Y (@i, i),
R s |

So we redefine

Po = e—a(wly)o

where ¢ is chosen such that we can apply Frinks construction.

Definition 3.16 Let z,y, 2, w € s X. Define

_ Po(2,9)po(2,w)
oozl po(, 2) po(y, w)”

We can show, that 3 constant L (depending on J) such that

1
E[x7yazaw]0 < [xay7sz:|o’ < L[xayazaw]o-

Figure 3.7
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4 Morphisms

Assume we have to Gromov hyperbolic spaces X and X'.

F:X->X 100 = 0 X'
x>

Classical Case H" Isometries Mobius maps
Quasi-Isometries Power-Quasi-Mdbius

eyl =b <2’y < aley| + b
Definition 4.1 f is PQ-Mobius (power-quasi) if 3p > 1, ¢ > 1, such that Y, y, z,w with [z,y, z,w] > 1
1
6[x7 y? Z’ w]l/p S [1”7 y,’ Zl? w,] S q[x7 y7 Z7 w]p'
Definition 4.2 Let X a metric space. x,y, 2z, w € X. The double-difference is defined by
(z,y,2,w) s = (2]y)o + (2lw)o — (2]2)0 = (ylw)o.
1
= 5 (w2l + fyw] = |ay| - |2wl)
= (@[y)w — (2]2)w-
Remark 4.3 1. (2ly). = (z,y,2,2)
2. |zz| = {z,z,y,y)

Definition 4.4 F': X — X is called PQ-isometry if 3a > 1,b> 0, Vz,y, 2z, w with (x,y, z, w) > 0

1
7<m7yasz> -b< (x',y',z',w') < a(x,y,z,w) +b.
a

Lemma 4.5 Let X, X’ Gromov hyperbolic spaces. If F' :— X' is a PQ-isometry then F' extends to a map
f 1 000X = 0o X’ which is PQ-Mébius.

Theorem 4.6 LetF': X — X' a quasi-isometry between geodesic spaces. Assume that X' is Gromov hyperbolic.
Then

1. X is Gromov hyperbolic
2. Fis a PQ-isometry

3. F extends to a PQ-Mobius map 0o X — 0o X'.
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