Summer School: Les Diablerets 2013 Gromov hyperbolic spaces

Notes to the talks of Prof. V. Schroeder

Contents

1	Basic Definitions and Motivation	4
	1.1 Basic Definitions	
	1.2 Quasi-Isometries	
	1.3 Stability of quasi-geodesics	5
2	Hyperbolic spaces	8
	2.1 δ -hyperbolicity	8
3	20 diligar j de minimoj	12
	3.1 Möbius structure	14
4	Morphisms	17

Introduction

The following pages are the notes I took attending the mini-course in "Gromov hyperbolic spaces" given by Prof. V. Schroeder during the summer school 2013 in Les Diablerets.

Tobias Berner, tobias.berner@math.uzh.ch

1 Basic Definitions and Motivation

1.1. Basic Definitions

Notations:

- (X,d) metric space
- |xy| := d(x,y).

Definition 1.1 $f: X \to X'$ is

· isometric, if

$$|f(x)f(y)| = |xy| \quad \forall x, y \in X.$$

• *homothetic*, if $\exists \lambda \geq 0$ such that

$$|f(x)f(y)| = \lambda |xy| \quad \forall x, y \in X.$$

- A geodesic in X is a homothetic map $\gamma: I \to X$, where $I \subset \mathbb{R}$ some interval (where $(I, d_e(x, y) = |x y|)$).
- X is geodesic, if $\forall x, y \in X \ \exists \gamma : [0,1] \to X$ geodesic with $\gamma(0) = x$ and $\gamma(1) = y$. Also $\gamma([0,1])$ is also called a geodesic. We denote this (not necessarily unique) geodesic with xy.

1.2. Quasi-Isometries

Motivated by geometric group theory (Cayley, Dehn).

Definition 1.2 Let G a finitely generated group, and $S \subset G$ a finite set of generators closed under inversion, that is $S = S^{-1}$.

Define the Cayley-graph $\Gamma(G, S)$ by

- the set of vertices is G
- there is an edge between g and g' iff $g'g^{-1} \in S$.

On $\Gamma(G, S)$ we can define a metric d_S called *word-metric* by $d_S(g, g')$ is the length of the minimal edge path between g and g'. This metric can be extended to the whole graph by identifying each edge with the interval [0, 1].

This makes $(\Gamma(G, S), d_S)$ to a geodesic metric space.

Figure 1.1: Cayley graph of \mathbb{Z} with $S = \{\pm 1\}$.

Figure 1.2: Cayley graph of \mathbb{Z} with $S = \{\pm 2, \pm 3\}$.

Example 1.3 Consider $(\mathbb{Z}, \{\pm 1\})$ and $(\mathbb{Z}, \{\pm 2, \pm 3\})$

Example 1.4 $(\mathbb{Z}, \{\pm 2, \pm 3\})$

Let G a finitely generated group and consider the two generating sets S and S'. Let $a \ge 1$ such that

$$||h||_{S'} \le a$$
 and $||h'||_S \le a$

where $h, h' \in G$.

Then the identity map

$$id: (G, d_S) \rightarrow (G, d_{S'})$$

is bi-lipschitz, that is

$$\frac{1}{a}|gg'|_{S'} \le |gg'|_S \le a|gg'|_{S'}$$

Definition 1.5 $f: X \to X'$ is quasi-isometric if $\exists a \ge 1, b \ge 0$ such that $\forall x, y$

$$\frac{1}{a}|xy| - b \le |f(x)f(y)| \le a|xy| + b.$$

 $f: X \to X'$ is called a *quasi-isometry*, if f is quasi-isometric and $\exists c \ge 0$ such that $d_H(f(x), X') \le c$, where d_H is the Hausdorff-distance. Quasi-isometry is an equivalence relation.

Corollary 1.6 So, two Cayley-graphs $\Gamma(G,S)$ and $\Gamma(G,S')$ are quasi-isometric.

1.3. Stability of quasi-geodesics

Definition 1.7 A *quasi-geodesic* in X is a quasi-isometric map $\gamma: I \to X$. γ is called an (a,b)-*quasi-geodesic* where a,b are the bounding-constants.

Example 1.8 Consider the logarithmic spiral given by $\gamma:(0,\infty)\to\mathbb{R}^2$, where $\gamma(t):=t\cdot(\cos(\ln t),\sin(\ln t))$. γ is a quasi-geodesic, because $\|\gamma(t)\|=t$, $\|\gamma'(t)\|=\sqrt{2}$. So

$$\frac{1}{\sqrt{2}}|\gamma(t)\gamma(s)| \le |t-s| \le |\gamma(t)\gamma(s)|.$$

Theorem 1.9 (Morse) Let $a \ge 1$, $b \ge 0$, then there exists $H := H(a,b) \ge 0$ such that for every (a,b)-quasi-geodesic, $f : [0,\ell] \to \mathbb{H}^2$ the Hausdorff-distance $d_H(f([0,\ell]),c) \le H$ where c is a geodesic from f(0) to $f(\ell)$.

Figure 1.3: The logarithmic spiral

Figure 1.4: Stability of quasi-geodesics

Lemma 1.10 $f: [\alpha, \beta] \to \mathbb{H}^2, d_c(f(\alpha)) = d_c(f(\beta)) = M'$ then $L \ge \cosh(M') \cdot d$ where $L = \operatorname{length}(f_{[\alpha, \beta]})$ and d_c is the distance to c.

Proof $\,f:[0,A] \to \mathbb{H}\,$ quasi-geodesic, so there are a,b such that

$$\frac{1}{a}|t - t'| - b \le |f(t)f(t')| \le a|t - t'| + b$$

for all $t, t' \in [0, A]$.

Figure 1.5

Figure 1.6

Step 1 One can assume without loss of generality that

$$\frac{1}{a}|t - t'| - b \le |f(t)f(t')| \le a'|t - t'| \tag{0}$$

for some a' := a'(a, b).

Step 2 $M := \max d_c(f(t))$, and $M' := M/(3a^2)$.

Let $L := \operatorname{length}(f|_{[\alpha,\beta]}),$

- 1. then by the previous lemma $L \ge \cosh(M') \cdot d$.
- 2. $L \ge 2(M M') \ge \frac{4}{3}M \ge 4a^2M'$.
- 3. By (0) we have $L \le a|\beta \alpha| \le a^2(|f(\alpha)f(\beta)| + b) \le a^2(2M' + d + b)$.
- 4. So we have $d \ge 2M' b$.

Assume $M' \ge b$ then by 4 we have

$$d \ge M' \ge b$$
.

So $L \le 4a^2d$ by 3.

Hence $\cosh(M') \cdot d \le L \le 4a^2d$.

So $M' \leq \text{Function}(a)$, and $M' \leq F(a, b)$.

2 Hyperbolic spaces

2.1. δ -hyperbolicity

Definition 2.1 Let X a metric space, and $\delta \geq 0$. Then X is δ -hyperbolic if $\forall x, y, z, w$ one has

$$|xy| + |zw| \le \max\{|xz| + |yw|, |xw| + |yz\} + 2\delta$$

 δ -inequality

X is called *Gromov-hyperbolic*, if $\exists \delta \geq 0$, such that *X* is δ-hyperbolic.

Figure 2.1: δ -hyperbolicity

Example 2.2 Consider a tree: The three numbers are

$$(a+c+d)+(b+c+e), (a+c+e)+(b+c+d), (a+b)+(d+e).$$

So this is 0-hyperbolic.

Figure 2.2: Tree example

Example 2.3 \mathbb{R}^2 is not hyperbolic: For this look at a square of side length n. The three side pairs get the numbers

$$2n$$
, $2n$, $2\sqrt{2}n$.

Figure 2.3: For $n \to \infty$ the distance between the length of a side and the diagonal diverges.

Figure 2.4: Equiradial points and incircle

Definition 2.4 Let X a metric space, $x, y, z, w \in X$ then we define

$$(y|z)_x := \frac{1}{2}(|xy| + xz| - |yz|).$$
 Gromov product

Figure 2.5: In a tripod the equiradial points coincide

Geometric definition (for metric spaces) incircle of the triangle.

Lemma 2.5 Let x, y, z a triangle in some metric space, then there are unique points $u \in [y, z], v \in [x, z], w \in [x, y]$, such that |xw| = |xv|, |yw| = |yu| and |zv| = |zu|. These points are called the *equiradial points*.

Lemma 2.6 Let X a metric space, and $\delta \geq 0$. X is δ -hyperbolic, if $\forall o, x, y, z \in X$, the following holds

$$(x|y)_o \ge \min\{(x|z)_o, (y|z)_o\}\delta.$$

Definition 2.7 $a, b, c \in \mathbb{R}$ is called a δ -triple if the two smaller differ by at most δ .

Let $o, x, y, z \in X$: such that the two larger of the three numbers

$$|ox| + |yz|, \quad |oy| + |zx|, \quad |wz| + |yx|$$

Figure 2.6: Equiradial points for ideal triangle in \mathbb{H}^2

Figure 2.7: δ -tripel

differ by at most 2δ .

If we look now at the negative numbers

$$-|ox| - |yz|, -|oy| - |zx|, -|wz| - |yx|$$

the two smaller differ by 2δ .

By adding |ox| + |oy| + |oz| to every entry we get

$$(|oy| + |oz| - |yz|), (|ox| + |oz| - |xz|), (|oy| + |ox| - |yz|)$$

which again the smaller two differ by atmost 2δ .

By multiplying these numbers with 1/2 we get that the smallest two Gromov-products

$$(y|z)_o, \quad (x|z)_o, \quad (x|y)_o$$

differ by at most δ .

Proposition 2.8 Let X a geodesic space, then X is Gromov-hyperbolic $\Leftrightarrow \exists \delta' \geq 0$ such that if x, y, z is a triangle and u, v, w equiradial points $a \in xv$, $b \in xw$, |xa| = |xb|, then $|ab| \leq \delta$.

Figure 2.8

Figure 2.9: If $|xa| = |xb| \le (y|z)_x$ then $|ab| \le \delta$.

Proof Argument for "⇒":

Study for a geodesic $\gamma:[0,\ell]\to X$ parametrized by arclength, the distance to x: that is

$$f: t \mapsto |\gamma(t)x|$$

Consider $(x|y)_o$, $(x|\gamma(t))_o$, $(\gamma(t)|y)_o$. Note that $(\gamma(t)|y)_o = t$ and $(x|y)_o = \alpha$. Denote $\alpha' := (x|\gamma(t))_o$. By δ -hyperbolicity we have $|\alpha - \alpha'| \le \delta$...

Theorem 2.10 (Stability of quasi-geodesics) Let X δ -hyperbolic and geodesic. $a \ge 1$, $b \ge 0$. Then there exists D = D(a,b) such that: if $\gamma : [0,\ell] \to X$ is an (a,b)-quasi-geodesic, and c is the geodesich from $\gamma(0)$ to $\gamma(\ell)$, then

$$d_H(\gamma, c) \leq D$$
.

3 Boundary at infinity

Figure 3.1

We chose a basepoint $o \in X$.

Definition 3.1 A sequence $(x_i)_{i\in\mathbb{N}}$ converges at infinity if

$$\lim_{i,j\to\infty}(x_i|x_j)_o=\infty.$$

Definition 3.2 If $(x_i), (y_i)$ are sequences which converge at infinity, then

$$(x_i) \sim (y_i) \quad :\Leftrightarrow \quad \lim_{i,j \to \infty} (x_i|y_i)_o = \infty$$

Lemma 3.3 ~ is an equivalence relation.

Proof The problematic part is the transitivity: $(x_i) \sim (y_j) \sim (z_k) \Rightarrow (x_i) \sim (z_k)$. $(x_i) \sim (y_j)$: $\forall K \exists N \forall i, j \geq N$: $(x_i|y_j)_o \geq K$ analgously $(y_j, z_k) \geq K$. As $(x_i|y_j)$, $(y_j|z_k)$ and $(x_i|z_k)$ is a δ -tripel we have $(x_i|z_k) \geq K - \delta$.

We define the boundary at infinity as

 $\partial_{\infty}X = \{[(x_i)] \mid (x_i)_{i \in \mathbb{N}} \text{ is a sequence converging at infinity}\}.$

Let X be CAT^{-1} .

Figure 3.2

Theorem 3.5 (Bourdon) $X \operatorname{CAT}^{-1}$, $o \in X$, then

$$\rho_o(x,y)\coloneqq e^{-(x|y)_o}$$

defines a metric on $\partial_{\infty}X$.

Example 3.6 \mathbb{H}^2 . Let $x, y \in \partial_\infty \mathbb{H}^2 = S^1 \in \mathbb{R}^2$, then

$$e^{-(x|y)_o} = \frac{1}{2} ||x - y||.$$

$$e^{-(x|y)_o} = \lim_{t \to \infty} (e^{h_t - 2t})^{1/2} = \sin(\vartheta/2)$$

Figure 3.3

Lemma 3.7 $o, o' \in X$, then $\rho_o, \rho_{o'}$ are Möbius equivalent, i.e. they define the same crossratio.

Proof We have to show

$$\frac{\rho_o(x,y)\rho_o(z,w)}{\rho_o(x,z)\rho_o(y,w)} = \frac{\rho_{o'}(x,y)\rho_{o'}(z,w)}{\rho_{o'}(x,z)\rho_{o'}(y,w)}$$

Note that

$$\frac{\rho_o(x,y)\rho_o(z,w)}{\rho_o(x,z)\rho_o(y,w)} = \lim_{i \to \infty} e^{-1/2 \cdot \left[(|ox_i| + |oy_i| - |x_iy_i| + |ox_i| + |ow_i| - |z_iw_i|) - (|ox_i| + |oz_i| - |x_iz_i| + |oy_i| + |ow_i| - |y_iw_i|) \right]}$$

$$= \lim_{i \to \infty} e^{-1/2 \cdot \left[-|x_iy_i| - |z_iw_i| + |x_iz_i| + |y_iw_i| \right]}$$

So the crossratio is independent of the chosen basepoint.

3.1. Möbius structure

Let Z a set $(Z = \partial_{\infty} X)$.

Definition 3.9 (extended metric) $d: Z \times Z \to [0, \infty]$, which has at most one point at infinity, that is $\exists \Omega(d) \subset Z, \#\Omega(d) \in \{0,1\}, \omega \in \Omega(d), x \in \mathbb{Z} \setminus \Omega(d)$, then $d(\omega,x) = \infty$. $Q := \{(x,y,z,w) \in \mathbb{Z}^4, \text{ but } (x,y,x,y) \in Q \text{ but } (x,y,x,x) \notin Q \text{ (no entry may appear three times).}$

Definition 3.10 $\operatorname{crt}_d: Q \to \Sigma \subset \mathbb{R}P^2$

$$\operatorname{crt}_d(x, y, z, w) := (|xy||zw| : |xz||yw| : |xw||yz|).$$

 $\Sigma = \{(a:b:c) \mid a,b,c \text{ have same sign}\}.$

Figure 3.4: Σ

Definition 3.11 $f: X \to X'$ is Möbius, if

- 1. *f* injective
- 2. $\operatorname{crt}_{d'}(f(x), \dots, f(w)) = \operatorname{crt}_d(x, \dots, w)$.

Z, d, d' extended metrics on Z, d Möbius equivalent to d' iff $\mathrm{id}: (Z, d) \to (Z, d')$ is Möbius.s A Möbius structure on Z is an equivalence class of Möbius equivalent metrics. (Z, \mathcal{M}) is called a Möbius space, where $\mathcal{M} = [d]$.

 $\widehat{\partial}_{\infty}X$, X is CAT^{-1} , then $(\partial_{\infty}X, [\rho_o])$ is canonical Möbius structure on $\partial_{\infty}X$. $\omega \in \partial_{\infty}X$

$$\rho_{\omega}(x,y) \coloneqq \frac{\rho_o(x,y)}{\rho_o(w,x)\rho_o(w,y)}.$$

This is also a metric on $\partial_{\infty}X$ and $\Omega(\rho_{\omega}) = \{\omega\}$. $[\rho_{\omega}] = [\rho_o]$ does not depend on o.

Example 3.12 \mathbb{H}^n , $\omega \in \partial_{\infty} \mathbb{H}^n$

- $(\partial_{\infty}\mathbb{H}^n, \rho_o m)$ isometric to $\mathbb{R}^{n+1} \cup \{\infty\}$.
- $(\partial_{\infty}\mathbb{H}^n, \rho_o)$ is isometric to $(S^{n-1}, 1/2$ chordal metric).

Example 3.13 \mathbb{CH}^2 , $-4 \le K \le -1$. $(\partial_{\infty}\mathbb{CH}^2, \rho_{\omega})$ isometric to Heisenberggroup (Karanyi-Reinmann gauge).

Back to Gromov hyperbolic spaces.

First difficulty: define $(x|y)_o$ for points $x, y \in \partial_\infty X$.

$$\lim_{x_i \to X, y_i \to y} (x_i | y_i)_o$$

does not necessarily exist. See the following example:

Example 3.14

Figure 3.5: Gromov products need not converge

We have $(x_i|y_i)_o = 0$ and $(x_i'|y_i')_o = 2$.

So we define it

$$(x|y)_o := \inf_{\text{sequences}} \liminf_{\substack{x_i \to x \\ y_i \to y}} (x_i|y_i)_o.$$

Then $x,y,z\in\partial_{\infty}X\colon (x|y)_o,(x|z)_o,(y|z)_o$ is a δ -tripel. The second difficulty is, that $\rho_o:=e^{-(x|y)_o}$ is not a metric. But it is a K-quasimetric.

Definition 3.15 ρ is a K-quasimetric, if

$$\rho(x,z) \le K \cdot \max\{\rho(x,y), \rho(y,z)\}.$$

$$\stackrel{a}{\longrightarrow} \stackrel{b}{\longrightarrow} \stackrel{c}{\longrightarrow} \mathbb{R}$$

Figure 3.6: In a K-quasimetric the quotient of the larger two numbers is bounded by K. That is $c/b \le K$

Construction by Frink: If ρ is a K-quasimetric with $K \leq 2$, then there exists a metric $\overline{\rho}$ with

$$\frac{1}{2K}\rho \le \overline{\rho} \le \rho.$$

$$\overline{\rho}(x,y) \coloneqq \inf_{\substack{\text{chains} \\ x=x_0, x_1, \dots, x_n=y}} \sum_{i=1}^n \rho(x_{i-1}, x_i).$$

So we redefine

$$\rho_o \coloneqq e^{-\varepsilon(x|y)_o}$$

where ε is chosen such that we can apply Frinks construction.

Definition 3.16 Let $x, y, z, w \in \partial_{\infty} X$. Define

$$[x,y,z,w]_o \coloneqq \frac{\rho_o(x,y)\rho_o(z,w)}{\rho_o(x,z)\rho_o(y,w)}.$$

We can show, that \exists constant L (depending on δ) such that

$$\frac{1}{L}[x,y,z,w]_o \leq [x,y,z,w]_{o'} \leq L[x,y,z,w]_o.$$

Figure 3.7

4 Morphisms

Assume we have to Gromov hyperbolic spaces X and X'.

$$F: X \to X'$$

$$x \mapsto x'$$

$$f: \partial_{\infty} \to \partial_{\infty} X'$$

Classical Case \mathbb{H}^n Isometries

Power-Quasi-Möbius

Möbius maps

Quasi-Isometries $\frac{1}{a}|xy| - b \le |x'y'| \le a|xy| + b$

Definition 4.1 f is PQ- $M\ddot{o}bius$ (power-quasi) if $\exists p \geq 1, q \geq 1$, such that $\forall x, y, z, w$ with $[x, y, z, w] \geq 1$

$$\frac{1}{q}[x, y, z, w]^{1/p} \le [x', y', z', w'] \le q[x, y, z, w]^p.$$

Definition 4.2 Let X a metric space. $x, y, z, w \in X$. The *double-difference* is defined by

$$\langle x, y, z, w \rangle := (x|y)_o + (z|w)_o - (x|z)_o - (y|w)_o.$$

$$= \frac{1}{2}(|xz| + |yw| - |xy| - |zw|)$$

$$= (x|y)_w - (x|z)_w.$$

1. $(x|y)_z = \langle x, y, z, z \rangle$ Remark 4.3

2. $|xz| = \langle x, x, y, y \rangle$

Definition 4.4 $F: X \to X$ is called *PQ-isometry* if $\exists a \ge 1, b \ge 0, \forall x, y, z, w$ with $\langle x, y, z, w \rangle \ge 0$

$$\frac{1}{a}\langle x, y, z, w \rangle - b \le \langle x', y', z', w' \rangle \le a\langle x, y, z, w \rangle + b.$$

Lemma 4.5 Let X, X' Gromov hyperbolic spaces. If $F : \to X'$ is a PQ-isometry then F extends to a map $f: \partial_{\infty} X \to \partial_{\infty} X'$ which is PQ-Möbius.

Theorem 4.6 Let $F: X \to X'$ a quasi-isometry between geodesic spaces. Assume that X' is Gromov hyperbolic.

- 1. X is Gromov hyperbolic
- 2. F is a PQ-isometry
- 3. F extends to a PQ-Möbius map $\partial_{\infty}X \to \partial_{\infty}X'$.

Bibliography

- [BeM] M. Bestvina and G. Mess, *The boundary of negatively curved groups* J. Amer. Math. Soc. 4 (1991), no. 3, 469–481.
- [BoS] M. Bonk and O. Schramm, *Embeddings of Gromov hyperbolic spaces*, Geom. Funct. Anal. 10 (2000), no.2, 266–306.
- [Bou] M. Bourdon, Structure conforme au bord et flot géodésique d'un CAT(-1)-espace, Enseign. Math., 41 (1995), 63-102.
- [Bow] B. Bowditch, Notes of Gromov's hyperbolicity criterion for path-metric spaces, in Group theory from a geometrical viewpoint (Trieste, 1990), 64–167, World Sci. Publ.
- [BrH] M. Bridson, A. Haefliger, *Metric spaces of non-positive curvature*, Springer-Verlag, Berlin Heidelberg, 1999.
- [BS1] S. Buyalo, V. Schroeder, *Elements of asymptotic geometry*, EMS Monographs in Mathematics. European Math. Society, 2007
- [CDP] M. Coornaert, T. Delzant, A. Papadopoulos, Geométrie et théorie des groups: Les groupes hyperboliques de Gromov, Lect. Notes in Math. 1441, Springer, (1990).
- [CP] M. Coornaert, A. Papadopoulos, *Symbolic Dynamics and Hyperbolic Groups*, Lect. Notes in Math. 1539, Springer (1993).
- [Fr] A. H. Frink, Distance functions and the metrization problem, Bull. AMS 43 (1937), 133-142.
- [FS] T. Foertsch, V. Schroeder, *Hyperbolicity*, CAT(-1)-spaces and the Ptolemy Inequality, Math. Ann. 350 (2011), no. 2, 339–356.
- [GH] E. Ghys, P. de la Harpe (Editors) *Sur les Groupes Hyperbolic d'après Mikhael Gromov*, Progress in Math. 83, Birkhäuser, Boston, (1990).
- [Gr1] M. Gromov, *Hyperbolic groups*, Essays in Group Theory, MSRI Publ. 8, Springer-Verlag (1987), 75–283.
- [Gr2] M. Gromov, *Asymptotic invariants of infinite groups*, Geometric Group Theory, Vol. 2 (Sussex, 1991), 1–295, London Math. Soc. Lecture Note Ser., 182, Cambridge Univ. Press, Cambridge, 1993.
- [Ha] U. Hamenstädt, *A new description of the Bowen-Margulis measure*, Ergodic Theory Dynam. Systems 9 (1989), 455–464.

- [Mo1] H.M. Morse, Recurrent geodesics on a surface of negative curvature, Trans. AMS, v.22 (1921), 84-100.
- [Mo2] H.M. Morse, A fundamental class of geodesics on any closed surface of genus greater than one, Trans. AMS, v.26 (1924), 25–60.
- [Pan] P. Pansu, Métriques de Carnot-Carathéodry et quasiisométries des espaces symétriques de rang un, Ann. of Math. (2) 129 (1989), no.1, 1–60.
- [Pau] F. Paulin, Un groupe hyperbolique est déterminé par son bord, J. London Math. Soc.(2) 54 (1996), 50–74.
- [Ro] J. Roe, Lectures on Coarse Geometry, University lecture series (Providence, R. I.), v. 31 (2003).
- [Sch] V. Schroeder, *An introduction to asymptotic geometry.* Strasbourg master class on geometry, 405–454, IRMA Lect. Math. Theor. Phys., 18, Eur. Math. Soc., Zürich, 2012.
- [V] J. Väisälä, *Gromov hyperbolic spaces*, Expo. Math. 23 (2005), no. 3, 187–231.