
BOARD NOTES FOR MINICOURSE:

ALEXANDROV GEOMETRY

These minicourse board notes are an attempt to make a few basic aspects of
Alexandrov geometry easily accessible. We consider both curvature bounded above
and curvature bounded below. Attention is given to examples, and to some dualities
between curvature bounded above and curvature bounded below. There are many
important omissions of theory, but it is hoped that this introduction will allow
easier access to more advanced topics. It is hoped as well to give a hint of the
beauty and power of the subject.

The notes draw on our book [AKP].

Other general sources for this subject include: [BBI] ; [BH], [BS07] for curvature
bounded above ; [BGP92], [S93], [Pl 02] for curvature bounded below.

Special thanks to Anton Petrunin for many interesting discussions and ideas.
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1. Model space

(1) (a) M(κ) = E2, S2(κ), H2(κ) (for κ = 0, κ > 0, κ < 0 respectively).

(b) Set πκ = π/
√
κ (=∞ if κ ≤ 0).

Exercise 1.1. Show a closed curve of length < 2 · πκ in S2(κ) lies in an open
hemisphere.

(2) Let
(
X , | ∗ ∗ | : X × X → [0,∞]

)
be a metric space.

(a) A geodesic γ joining x1 and x2 is a constant-speed path of length |x1x2|.
For a local geodesic γ, the parameter interval is covered by open subintervals on
which γ is geodesic. We write [x1x2] for either γ or its image. The choice may not
be unique, but once we write [xy] it means we have made a choice.

(b) X is r-geodesic (r-intrinsic) if any x2, x2 ∈ X with |x1 x2| < r are joined by a
geodesic (respectively, by curves of length arbitrarily close to |x1x2|). For geodesic
(intrinsic), take r =∞.

(c) A triangle [x1x2x3] in X is [x1x2] ∪ [x2x3] ∪ [x3x1].

(d) For x1, x2, x3 ∈ X , the model triangle 4̃κ[x1 x2 x3] in M(κ) is the triangle

with sidelengths |x1 x2|, |x2 x3|, |x3 x1|. The model angle ∠̃κ
[
x1 x

2

x3

]
is the angle

corresponding to x1 in 4̃κ
[
x1 x2 x3

]
. These are said to be defined if the sum of

sidelengths is < 2 · πκ.

(3) (a) For a hinge
[
p xy
]

= [px] ∪ [py] in X , define the angle ∠
[
p xy
]

by

∠
[
p xy
]

= lim
x̄,ȳ→p

∠̃κ
[
p x̄ȳ
]
,

where x̄ ∈ [px], ȳ ∈ [py], if the limit exists.

(b) This definition of angles in X is independent of κ, e.g.

∠̃κ
[
p xy
]
− ∠̃κ̄

[
p xy
]
≤ C(κ, κ̄) · |px| · |py|.

(c) Triangle inequality for angles holds:

∠
[
p xz
]
≤ ∠

[
p xy
]

+ ∠
[
p yz
]
,

if all three angles are defined. (Use κ = 0, Euclidean cosine formula, triangle
inequality for distance.)
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2. Definitions

• In this column, assume X complete, • In this column, assume X complete,
πκ-geodesic, intrinsic, dimHaus X <∞.1

(1) (a) We say X ∈ CATκ ⇔ (1) (a) We say X ∈ CBBκ ⇔
Point-Side holds: Point-Side holds:

if 4̃κ[pxy] = [p̃x̃ỹ] is defined, if 4̃κ[pxy] = [p̃x̃ỹ] is defined,

z ∈ [xy], z̃ ∈ [x̃ỹ], |xz| = |x̃z̃|, then z ∈ [xy], z̃ ∈ [x̃ỹ], |xz| = |x̃z̃|, then

(∗) |pz| ≤ |p̃z̃|. (∗) |pz| ≥ |p̃z̃|.

z

x p

y

z

x p

y
z

x p

y

(b) (∗) ⇔ ∠̃κ
[
x pz
]
≤ ∠̃κ

[
x py
]
. (b) (∗) ⇔ ∠̃κ

[
x pz
]
≥ ∠̃κ

[
x py
]
.

(c) Examples: X = (c) Examples: X =

Tree; locally-E2 sector with any angle; Closed convex subset of En;

locally-E2 cone with angle ≥ 2π. locally-E2 cone with angle ≤ 2π.

(d) Geodesics can bifurcate. (d) Geodesics cannot bifurcate.

(e) Geodesics are unique. (e) Geodesics need not be unique.

(2) (a) By monotonicity in (1) (b), for a hinge [px] ∪ [py]:

Point-Side ⇒ ∠
[
p xy
]

exists. Point-Side ⇒ ∠
[
p xy
]

exists.

(b) Also by (1) (b), Point-Side ⇒ the following Angle comparisons:

∠
[
x py
]
≤ ∠̃κ̄

[
x py
]
. ∠

[
x py
]
≥ ∠̃κ̄

[
x py
]
.

Exercise 2.1. Semicontinuity of angles. If
[
pn

xn
yn

]
→
[
p xy
]

in X , then

X ∈ CATκ ⇒ X ∈ CBBκ ⇒
∠
[
p xy
]
≥ lim supn→∞∠

[
pn

xn
yn

]
. ∠

[
p xy
]
≤ lim infn→∞ ∠

[
pn

xn
yn

]
.

Prove and give examples.

Exercise 2.2. In X ∈ CATκ, show a local geodesic of length ≤ πκ is a geodesic.

1This assumption implies X is proper, hence πκ-geodesic. Infinite-dimensional theory is carried
out in [AKP].

3



(3) Proof that Angle ⇒ Point-Side :

(a) X ∈ CATκ: (a) X ∈ CBBκ:

x z

p

y
y

p

x
z

(b) Side-by-side model triangles: (b) Side-by-side model triangles:

x z

p

y
y

p

x
z

α̃+ β̃ ≥ α+ β ≥ π (by (2) (b) α̃+ β̃ ≤ α+ β ≤ ??? π ??? (by (2) (b)
and triangle inequality for angles). and ???).

(c) The triangle inequality for angles never switches sign! So in CBBκ column of

(2) (b), add to Angle : (∗∗) α+β = π. (You can check that Point-Side ⇒ (∗∗).)

(d) Apply Alexandrov Lemma in M(κ) (think of 4 hinged rods in the plane):

x
z

y

p

x
z

y

p

“Snap out” to 4̃κ[p x y]: “Snap in” to 4̃κ[p x y]:

|pz| = |p̃z̃| ≤ | ˜̃p˜̃z|. |pz| = |p̃z̃| ≥ | ˜̃p˜̃z|. �

(e) Remark: For both “snap out” and “snap in”,

∠̃κ
[
p xz
]

+ ∠̃κ
[
p zy
]
≤ ∠̃κ

[
p xy
]
.
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Exercise 2.3. Referring to the figures in (3) (d), (b), (a):

(i) For X ∈ CATκ, find a short, i.e. 1-Lipschitz, map

ConvexHull [˜̃p˜̃x˜̃y]→ M(κ)

that maps ˜̃p, ˜̃x, ˜̃y, ˜̃z to p̃, x̃, ỹ, z̃.

(ii) We want a short map

ConvexHull [˜̃p˜̃x˜̃y] → X
that maps ˜̃p, ˜̃x, ˜̃y to p, x, y (hence maps [˜̃p˜̃x˜̃y] to [pxy]). Check that the simplest
map you might try is not short, i.e. the line-of-sight map taking geodesics that join
˜̃p to points of [˜̃x ˜̃y] proportionally to geodesics that join p to corresponding points
of [x y].

(iii) Outline of how to get the short map in (ii) (not part of the exercise): Extend
your construction in (i) to partition points z̃1, . . . , z̃n. In limit, get short map

ConvexHull [˜̃p˜̃x˜̃y]→ M(κ)

mapping ˜̃p, ˜̃x, ˜̃y to p̃, x̃, ỹ, and ConvexHull [ ˜̃p˜̃x˜̃y] to “development of [xy] from p”.
It is the line-of-sight map from this development to X that is short.

(4) Exercise 2.3 is special case, where α = triangle, of:

(a) Reshetnyak majorization theorem [R68]. Suppose X ∈ CATκ, and α is a
closed curve in X of length < 2 ·πκ. Then there is a convex set CS ⊂M(κ)
bounded by a curve α̃, and a short map F : CS → X , such that F ◦ α̃ is
length-preserving and F ◦ α̃ = α.

(5) Lang-Schroeder [LS97] developed the theory of extendibility of short maps

f : S ⊂ X 1 ∈ CBBκ → X 2 ∈ CATκ

(also see [AKP11]). e.g. characterizations of CBBκ, CBBκ :

(a) Suppose X complete, intrinsic, dimHaus X <∞:

X ∈ CBBκ ⇐⇒ for any 3-point set V3 and 4-point set V4, V3 ⊂ V4 ⊂ X ,
any short map f : V3 →M(κ) extends to a short map F : V4 →M(κ).

(b) Suppose X complete, and ∃ unique [xy] for any x, y ∈ X with |x y| < πκ:

X ∈ CATκ ⇐⇒ for any 3-point set V3 and 4-point set V4, V3 ⊂ V4 ⊂M(κ),
where perimeter V3 < 2 · πκ, any short map f : V3 → X extends to a short
map F : V4 → X .

(c) “⇐=” : In both (a) and (b), extendibility condition immediately implies
Point-Side.

5



(6) (a) A quadruple of points x1, x2, x3, x4 in a metric space X satisfies

(1 + 3) - point κ-comparison, in brief (1 + 3)κ , if

∠̃κ[x1 x
2

x3 ] + ∠̃κ
[
x1 x

3

x4 ] + ∠̃κ[x1 x
4

x2

]
≤ 2 · π,

or at least one of the three model angles ∠̃κ
[
x1x

i

xj
]

is undefined [BGP92].

x1
x2

x3x4

(b) A quadruple of points x1, x2, x3, x4 in a metric space X satisfies

(2 + 2) - point κ-comparison, in brief (2 + 2)κ , if

(i) either ∠̃κ
[
x1 x

3

x4

]
≤ ∠̃κ

[
x1 x

3

x2

]
+ ∠̃κ

[
x1 x

2

x4

]
,

(ii) or ∠̃κ
[
x2 x

3

x4

]
≤ ∠̃κ

[
x2 x

3

x1

]
+ ∠̃κ

[
x2 x

1

x4

]
,

or at least one of the six model angles ∠̃κ
[
xi
xj

xk
]

is undefined [AKP].

x2

x4
x1

x3

(c) X ∈ CATκ ⇔ (c) X ∈ CBBκ ⇔
quadruples satisfy (2 + 2)κ [AKP]. quadruples satisfy (1 + 3)κ [BGP92].

(d) These definitions ⇒ CATκ, CBBκ closed under GH–convergence to a
complete metric space.

Exercise 2.4. Show that a complete πκ-intrinsic space in which quadruples satisfy

(2 + 2)κ is πκ-geodesic.
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3. Globalization I

Globalization theorems are power sources for Alexandrov geometry. We look at
extensions of these theorems and ideas of proof in a later section.

(1) Let X be a locally intrinsic space.

(a) X has curvature ≥ κ, written curvX ≥ κ, if all quadruples lying in
some neighborhood of p satisfy (1 + 3)-point κ-comparison;

(b) X has curvature ≤ κ, written curvX ≤ κ, if all quadruples lying in
some neighborhood of p satisfy (2 + 2)-point κ-comparison.

(2) (a) Lemma: X ∈ CBBκ, dimX = 1 ⇔ X isometric to circle or closed,
connected subset of R.

(b) Burago-Gromov-Perelman CBB globalization theorem [BGP92] 2. Let
X be a complete intrinsic space with curvX ≥ κ. Then X ∈ CBBκ.
If dimX > 1, all triangles have perimeter ≤ 2 · πκ.

(c) This theorem was proved by Alexandrov in dimension 2 [A46], and by
Toponogov for n-dimensional Riemannian manifolds [T59].

(d) Only now (with triangles of perimeter > 2 ·πκ ruled out) can we prove:

If X ∈ CBBκ then X ∈ CBBκ
′

for all κ′ ≤ κ.

(3) (a) Upper curvature bounds yield more complicated globalization.

(b) Ex. 2.3 (a), applied repeatedly to a patchwork of small triangles, gives:

Alexandrov patchwork. X ∈ CATκ ⇔ curvX ≤ κ and geodesics
joining points at distance< πκ exist, are unique, and vary continuously
with their endpoint pairs.

(c) Hadamard-Cartan theorem.3 If X is a complete, simply connected
intrinsic space satisfying curvX ≤ κ ≤ 0, then X ∈ CATκ.

(4) (a) Complete intrinsic spaces of curv ≥ κ are closed under GH–convergence
to a complete metric space, by CBBκ globalization theorem and §2.(6)(d).

(b) Not so for curv ≤ κ ! e.g. one-sheeted hyperboloids with waist cir-
cumferences → 0 satisfy curv ≤ 0. GH–limit = double cone (which
does not have unique geodesics in any neighborhood of the vertex).

2This theorem does not assume finite dimension.
3The Hadamard–Cartan theorem was first stated for geodesic spaces X by Gromov [G87,

p.119]. A detailed proof when X is proper was given by Ballmann [Ba85]. A proof in the non-
proper case was given by Alexander-Bishop [AB90]. Kleiner, Bridson-Haefliger observed that this
proof extends to intrinsic spaces.
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4. CBB application: orbit space

Exercise 4.1. [BGP92] Suppose curv X̃ ≥ κ and a group Γ acts on X̃ by isometries

with closed orbits. Show curv(X̃/Γ) ≥ κ.

(1) (a) Danzer-Grünbaum theorem [DG62]. (Erdös’ problem[E57].) If x1, . . . , xm

∈ En have all angles ≤ π/2, then m ≤ 2n. If m = 2n, the xi are vertices of a
right parallelepiped.

(b) Danzer-Grünbaum-Perelman theorem. If X ∈ CBB0, dimX = n, m = #
extremal points, then m ≤ 2n.

(c) Corollary. For a discrete isometric action on En, the number of isolated
singular orbits is ≤ 2n.

(2) (a) Here p is an extremal point of X ∈ CBBκ if the “unit tangent sphere”
ΣpX has diameter ≤ π/2 (see §8).

(b) Given a discrete isometric action by Γ on En, X = En/Γ ∈ CBB0. An
extremal point of X corresponds to an isolated singular orbit, i.e. the image of an
isolated fixed point in En of some subgroup of Γ.

(c) Proof of Corollary. Immediate from (b) and D-G-P theorem.

(d) Lebedeva’s theorem [Lb11]. If X ∈ CBB0 has dimension n and 2n extremal
points, X is isometric to En/Γ for a discrete, cocompact isometric action by Γ.

(e) Examples of (d): Euclidean rectangular solid; tetrahedral surface glued from
four congruent Euclidean triangles. 4

4Source for this section: [Lb11].
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5. CAT construction: gluing

(1) (a) We say CS ⊂ X is πκ-convex if |x y| < πκ ⇒ ∃ [x y], and all [x y] ⊂ CS.

(b) CATκ is closed under gluing on isometric πκ-convex subsets:

Reshetnyak gluing theorem [R60]. Consider X 1,X 2 ∈ CATκ, closed πκ-convex
subsets CSi ⊂ X i, and an isometry ι : CS1 → CS2 of CS1 onto CS2. If X =
X 1 tι X 2 is the intrinsic space obtained by gluing X i along ι, then X ∈ CATκ.

(c) Proof assuming X is geodesic. For triangle [x0x1x2] of perimeter < 2 · πκ in
X , we may suppose x0 ∈ X 1 and x1, x2 ∈ X 2. Choose points z1, z2 in the gluing
set, and lying on sides [x0x1] and [x0x2] respectively. Then [x0z1z2] ⊂ X 1, and
[x1z1z2] ⊂ X 2, [x1z2x2] ⊂ X 2. Now apply Alexandrov “snap-out” Lemma twice to
side-by-side model triangles.

x0

x1 x2

z1

z2

Exercise 5.1. (Bishop [Bi08], Petrunin)

(i) Let P be a polygon in E2 carrying its intrinsic metric. Show P ∈ CAT0.

(ii) Let X be the completion in the intrinsic metric of an open, simply con-
nected, proper subset X̌ of E2. Show X ∈ CAT0.

(2) (a) Dually, CBBκ is closed under gluing on isometric boundaries, e.g. closed
balls in En and Hn, of radius sinh r and r respectively, glued on their (isometric)
boundary spheres.

Petrunin gluing theorem [P97]. Consider X 1,X 2 ∈ CBBκ, and an isometry ι :
∂X 1 → ∂X 2 of ∂X 1 onto ∂X 2. If X = X 1 tι X 2 is the intrinsic space obtained
by gluing X i along ι , then X ∈ CBBκ.

(b) If X 1 = X 2, this is Perelman doubling theorem [Pr91].

(c) CBBκ gluing proof is harder than CATκ!

(d) Definition of ∂X for X ∈ CBBκ is given in §11.(5).
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6. CAT application: billiards

Burago, Ferleger, and Kononenko [BFK98] used CAT0 geometry to solve a long-
standing, celebrated open problem: In a gas of m hard balls, ∃ a usniform bound on
number of collisions. Their method is by solving a more general billiards problem.5

(1) (a) Configuration space for m balls of radius 1/2 in E3:

S̄ = E3m − {(x1, . . . , xm) ∈ E3m : |xi − xj | < 1}.
(b) Collisions ∼ ∂S̄, motions of the balls ∼ billiards trajectories on table S̄.

(2) (a) More generally, for any convex bodies Bi ⊂ EN , consider billiarde in

S̄ = EN − ∪mi=1B
i.

For simplicity, let m = 2, γ̄ = billiard trajectory in S̄ = EN − (B1 ∪B2).

B1

ai+1

B2

B2
B1

ai

bibi+1

(b) Each time γ̄ strikes ∂Bi, say at p, glue a new copy of EN − Bi along ∂Bi.
Let S be the resulting space. Then γ̄ is the projection of a local geodesic γ in S
that moves from one leaf to the next at each p.

(c) S is now our billiard table. Alas, S takes on curvature of ∂Bi ! But by
Reshetnyak gluing (§5), gluing in one copy of each Bi gives

S ⊂ X ∈ CAT 0 !

(d) γ remains a local geodesic in the new space X , hence a geodesic by Ex. 2.2.
Goal: upper bound on # (strike points of γ). (Difficult case: γ almost parallel to
intersection curve of B1,B2.)

(3) Core of proof (local argument): Assume γ lies in a neighborhood in S satisfying
a necessary nondegeneracy condition on tangent planes to ∂Bi (see (b)).

(a) Let a1, . . . , an ∈ B1 and b1, . . . , bn ∈ B2 be the strike points of γ (see figure).
Set di = |ai bi|+ |bi ai+1| − |ai ai+1|, and suppose dj is the least of these.

(b) Let zi ∈ B1 ∩ B2 be the closest point of B1 ∩ B2 to ai. By nondegeneracy
condition, ∃ C such that replacing [ai bi] ∪ [bi ai+1] by [ai zi] ∪ [zi ai+1] lengthens
γ by ≤ C · di.

(c) Define a new path by replacing:

• [aj bj ] ∪ [bj aj+1] by [aj zj ] ∪ [zj aj+1];
• [ai bi] ∪ [bi ai+1] by [ai , ai+1] for all i 6= j.

(d) Since new path intersects B1 ∩B2, length strictly increases. Hence
C · dj − (n− 1) · dj > 0, so n < C + 1.

5Source for this section: [BBI, §9.4]. The theorem applies to non-negatively curved Riemannian
manifolds, not just to En.
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7. Cones

• Let X be a metric space.

Definition 7.1. Cone X =
(
X × [0,∞)

)
/
(
X × {0}

)
with metric

|(x, s)(y, t)| =
√
s2 + t2 − 2 · s · t · cos

(
min {|x y|, π}

)
.

Exercise 7.2. Show X ∈ CAT1 ⇐⇒ Cone X ∈ CAT0.

Similarly: If X ∈ CBB1 and X 6= connected subset of R of length > πκ or circle of
length > 2 · πκ, then Cone X ∈ CBB0. If Cone X ∈ CBB0, then X = 2 points or
X is connected and X ∈ CBB1.
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8. First order structure

• Suppose X ∈ CATκ or X ∈ CBBκ.

(1) (a) Set ΓpX = geodesics γ with γ(0) = p. Set γ1 ∼ γ2 if this angle is 0. The
space of geodesic directions is

Σ′pX = (ΓpX/ ∼)

carrying the angle metric.

(b) The direction space ΣpX is the metric completion of Σ′pX .

(c) The tangent space of X at p is TpX = Cone (ΣpX ).

(2) If curvX ≤ κ, or curvX ≥ κ, X locally compact and all geodesics of X
extendible, then

TpX = GH–limλ→∞
(
λX , p

)
.

Exercise 8.1. Give examples of X ∈ CATκ and p ∈ X , where:

(i) the limit in (2) does not exist;

(ii) the limit in (2) exists but is not a cone over a metric space.

Theorem.

(i) [BGP92] curvX ≥ κ ⇒ TpX ∈ CBB0.

(ii) [N95] curvX ≤ κ ⇒ TpX ∈ CAT0.
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9. Riemannian examples

• Let X = n-dimensional Riemannian manifold (n≥2), possibly with ∂X 6= ∅.

• For p ∈ ∂X , denote the principal curvatures of ∂X at p by

k1(p) ≤ k2(p) ≤ . . . ≤ kn−1(p).

Convention: ki(p) > 0 for X = closed ball in En;
ki(p) < 0 for X = complement of open ball in En.

(1) (a) curvX ≥ κ ⇔ secX ≥ κ, and ∂X convex (all ki(p) ≥ 0).
(Sec denotes sectional curvature.)

(b) Buyalo convex hypersurface theorem [B76, AKP08]. Suppose ∂X = ∅,
secX ≥ κ, and C ⊂ X is a convex hypersurface with its intrinsic metric, i.e. C
bounds a convex set. Then C ∈ CBBκ.

(c) Kosovskǐi gluing theorem for curv ≥ κ [Ko02-1]. Consider X 1,X 2 with
secX i ≥ κ, and an isometry ι : ∂X 1 → ∂X 2 of ∂X 1 onto ∂X 2. Set X = X 1 tι X 2.
Then curvX ≥ κ⇔ II(∂X 1) + II(∂X 2) is positive semi-definite.

(2) (a) A.-Berg–Bishop characterization theorem for manifolds-with-boundary [ABB93].
curvX ≤ κ ⇔ secX ≤ κ and sec(∂X )(P ) ≤ κ for any tangent 2-plane P on
which ∂X is strictly concave, i.e. the second fundamental form II(∂X ) is negative
definite.

(b) Corollary. Suppose X ⊂ X where X is an n-dimensional Riemannian mani-
fold with secX ≤ κ. If k2(p) ≥ 0 for all p ∈ ∂X , then curvX ≤ κ.

(c) Kosovskǐi gluing theorem for curv ≤ κ [Ko02-2, Ko04]. Consider X 1,X 2 as
in (2)(a), with curvX i ≤ κ, and an isometry ι : ∂X 1 → ∂X 2 of ∂X 1 onto ∂X 2. Set
X = X 1 tι X 2. If II(∂X 1) + II(∂X 2) is negative semi-definite, then curvX ≤ κ.
The theorem extends to multiple X i all of whose whose boundaries are isometric.
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10. Convex functions

• Let X be a metric space.

(1) (a) For locally Lipschitz f : X → R, write

f ′′ + κf ≥ c (≤ c)
if (∗) (f ◦ γ)′′ + κ · (f ◦ γ) ≥ c (≤ c) for every unitspeed geodesic γ.

(b) (∗) is in barrier sense, i.e. for each t, some y such that y′′+κ ·y = c coincides
with (f ◦ γ) at t, and satisfies (f ◦ γ) ≥ y (respectively ≤ y ) on a sufficiently short
open interval about t (support property).

(c) Then f is semiconvex (semiconcave): ∃ constant generalized lower (upper)
bound on f ′′ along geodesics. (f semiconvex ⇒ (−f) semiconcave.)

(2) (a) Set

mdκ(x) =


x2/2, κ = 0

(1/κ)(1− cos
√
κx), κ > 0

(1/κ)(1− cosh
√
−κx), κ < 0.

snκ(x) = (mdκ)′(x) =


x, κ = 0

(1/
√
κ) sin(

√
κx), κ > 0

(1/
√
−κ) sinh(

√
−κx), κ < 0.

(b) In M2(κ), f = mdκ ◦ distp satisfies f ′′ + κf = 1.

(c) In M(κ), f = snκ ◦ dist [x y] satisfies f ′′ + κf ≥ 0.

(3) Set B(A, r) = {q ∈ X : |q A| < r} for A ⊂ X . By (2)(b) and Point-Side ,

(a) X ∈ CATκ ⇔ f = mdκ ◦ distp satisfies f ′′ + κf ≥ 1 on B(p, πκ).

(b) X ∈ CBBκ ⇔ f = mdκ ◦ distp satisfies f ′′ + κf ≤ 1 on B(p, πκ).

(4) (a) On the other hand, (2)(c) relates to the following theorems:

(b) Theorem. Let X ∈ CATκ, and CS ⊂ X be πκ-convex. Then f = snκ ◦ distCS

satisfies f ′′ + κf ≥ 0 on B(CS, πκ/2).

CS
p

(c) Perelman concavity theorem. If X ∈ CBBκ, then f = snκ ◦ dist∂X satisfies
f ′′ + κf ≤ 0. (See §11.(5) for definition of ∂X .)

p

14



(5) (a) Lemma. Let curvX ≥ κ or curvX ≤ κ, and f : X → R be a locally
Lipschitz function such that (f ◦ γ)+(0) exists for every geodesic γ with γ(0) = p.
Then ∃ ! linearly homogeneous, Lipschitz map

dpf : TpX → R

such that (dpf)(x) = (f ◦ γ)+(0) when γ is a geodesic with γ+(0) = x.

(b) Let curvX ≥ κ or curvX ≤ κ, and f : X → R≥0 be a locally Lipschitz
semiconcave function ((1)(c)). Then:

(i) dpf exists and is concave.

(ii) The gradient ∇pf ∈ TpX exists, where ∇pf = 0p if dpf ≤ 0, and otherwise

∇pf = (dpf)(umax) · umax,

for unique umax ∈ ΣpX where (dpf) |ΣpX takes its maximum.

(c) Semiconcave functions capture much of the geometry of Alexandrov spaces.
Their gradient curves exist and are unique, and the corresponding gradient flow
is locally Lipschitz. Gradient curves of semiconcave functions were introduced in
[PP94] (for curv ≥ κ), and their properties developed by Lytchak [Lt 05] (for both
curv ≥ κ and curv ≤ κ) and Petrunin [P07].

Exercise 10.1. Let X be a closed triangular region in E2. Describe the gradient
curves of f = dist∂X .
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11. Local structure

(1) (a) Notions of metric space dimension include Hausdorff, topological (cov-
ering), and geometric: the largest number of times you can pass to
direction space without getting the empty set.

(2) X ∈ CBBκ has nice local structure [BGP92, Pr91, Pr93] :

(a) X is locally compact, hence proper and geodesic.

(b) dimHaus X is an integer.

(c) All extant notions of dimX agree.

(d) There is an open dense set of points p such that p has a neighborhood
bi-Lipschitz homeomorphic to an open region in Rn.

(e) If dimX = n, then TpX ∈ CBB 0 has dimension n and ΣpX ∈ CBB 1

has dimension n− 1 for all p ∈ X .

(f) The set of points p at which ΣpX is isometric to Sn−1 is dense, and a
countable intersection of open dense sets.

(3) Kleiner [Kl99] introduced geometric dimension and studied its relation to
other notions of dimX for X ∈ CATκ (a more complicated situation than
CBBκ). e.g. Conjecture: dimGeom X = dimTop X (true for separable X ).

Exercise 11.1. Construct a metric tree X such that X c has infinite Haus-
dorff dimension, where X c is the metric completion of X . (Note that
X c ∈ CAT 0 by Ex. 2.4. Also dimTop X = 1.)

(4) (a) A key tool in (3) is the barycentric simplex Θf of p0, . . . , pk∈ X [Kl99].
Set f=(f0, . . . , fk), f i = mdκ ◦ distpi (§10.(3)(a)). Let ∆k = {x ∈
Rk :

∑k
i=0 x

i = 1, xi ≥ 0}, x = (x0, . . . , xk). Define Θf : ∆k → X by

Θf (x) = MinPoint

k∑
i=0

xi · f i.

(b) The theorems of (2) depend on analogous constructions, with detailed
study of strutting point arrays (“strainers”) [BGP92, Pr91, Pr93].

(5) Definition of ∂X for X ∈ CBBκ (by induction on dimension):

(a) If dimX = 1, then ∂X = topological boundary of X (so ∂X = 1 or 2
points, or ∂X = ∅).

(b) If dimX = n > 1, then

∂X = { p ∈ X : ∂
(
ΣpX

)
6= ∅ }.
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12. Warped products

(1) (a) Let B, F be intrinsic spaces, and f :B → R≥0 be continuous. Define
(B × F)/ ∼ by identifying elements of {p} × F when f(p) = 0 (we identify
this class with p). A curve γ : J → (B × F)/ ∼ determines γB : J → B and
γF : J+ → F for J+ = J−J0, J0 = (f ◦γB)−1(0). Suppose γB and γF are Lipschitz.

(b) Writing J+ = t Ji, set

length γ =
∑
i

∫
Ji

√
v2
B + (f ◦ γB)2 · v2

F + length (γB|J0),

where
∫

is Lebesgue integral, and vB, vF are speeds of γB, γF (defined almost
everywhere on their domains).

(c) The warped product X = B ×f F is the corresponding intrinsic space.

(2) Examples: (a) B ×1 F = B × F .

(b) X = {r ∈ [0, c < π]} ×sin r Sn(1) is a metric ball in Sn+1(1).

c ≤ π/2 ⇒ X ∈ CBB1 ; X ∈ CAT1.

c > π/2 ⇒ X /∈ CBBκ for any κ ; X ∈ CAT 1/ sin2 c.

(c) κ-cone of F : Cone κ F = {r ∈ Iκ}×snκ r F , Iκ = [0,∞) if κ ≤ 0, or [0, πκ].

Spherical suspension of F : Cone 1 F .

κ-join of F1, F2: Joinκ
(
F1,F2

)
=
(
{r ∈ Iκ} ×snκ r F1

)
×csκ ◦ projr F

2,
where csκ = (snκ)′, and projr is projection to first factor.

(d) Let M0(κ) be a point if κ ≤ 0; two points at distance πκ if κ > 0. If n ≥ 1,

Mn(κ) = Cone κMn−1(1), Mm+n+1(κ) = Joinκ
(
Mm(1),Mn(sgnκ)

)
.

Exercise 12.1. (i) Let B be a closed triangular region in E2. Describe X =
B ×f S1(1), where f = dist ∂B.

(ii) Let X = E2 ×f S1(1), where f = dist 0. Find Σ 0 X .

Exercise 12.2. Show the spherical join, Join1

(
X 1,X 2

)
, satisfies

Cone Join1

(
X 1,X 2

)
= Cone X 1 × Cone X 2.

(3) (a) B×{ϕ0} is isometric to B, and isometrically embedded in X .

(b) If f(p0) 6= 0, then {p0} × F , with its intrinsic metric, is homothetic to F
with multiplier f(p0).

(c) By length formula, geodesics of X seek lower f -values. e.g. If f(p0) > 0
is local min of f , then {p0} × F is isometrically embedded in X . In this case,
curvX ≤ κ ⇒ curvF ≤ κF = κ · f(po)

2, and same for ≥.
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13. Warped product examples

• Suppose X = B×f F for B, F intrinsic; f : B → R≥0 Lipschitz; Z = f−1(0) 6= B.

Write f ∈ Ĉκ if f ′′ + κf ≥ 0, and f ∈ C̆κ if f ′′ + κf ≤ 0.

(1) A.-Bishop characterization theorem for warped products [AB90, AB 98, AB13]:

X ∈ CBBκ ⇐⇒ : 6 X ∈ CATκ ⇐⇒ :

(a) B ∈ CBBκ and f ∈ Ĉκ. (a) B ∈ CATκ and f ∈ C̆κ.

(b) F ∈ CBBκF where : (b) F ∈ CATκF where :

(i) if Z= ∅, κF = κ · (inf f)2 (i) if Z = ∅, κF = κ · (inf f)2

(This condition is §12.(3)(c), or its asymptotic version.)

(ii) ifZ 6= ∅, κF = sup {(f ◦ α)+(0)2} (ii) if Z 6= ∅, κF = inf {(f ◦ α)+(0)2}
for distZ-realizers α with for distZ-realizers α with
footpoint α(0) ∈ Z, |α+(0)| = 1. footpoint α(0) ∈ Z, |α+(0)| = 1.

e.g. X = Cone κ Sn(1/c2)), c ≤ 1. e.g. X = Cone κ Sn(1/c2)), c ≥ 1.

OR (if less)

(iii) κF= inf{κ·f(p)2 : distZ(p) ≥ $κ/2}(
e.g. X = dumbbell = I ×f Sn(1), n ≥ 2, I = [ 0 , c >π];
f(x) = sinx for x ≤ π/2 + ε < c/2;
f(x) = sin

(
x− (c− π)

)
for x ≥ c− π/2− ε; otherwise

f(x) = sin(π/2 + ε). For κ = 1, X satisfies (1), (2)(ii),
not (2)(iii). X /∈ CAT1 since {c/2} × Sn(1) is
isometrically embedded in X with curvature 1/f(c/2)2 > 1.

)
.

(c) Gluing condition:

B† ∈ CBBκ, f† ∈ Ĉκ where B† =
2 copies of B glued on cl (∂B − Z),
f† = canonical extension of f to B†.(
e.g. B̃ = closed unit ball in En, f̃ = dist∂B, B = convex body in B̃,

f = f̃ |B. Then B, f satisfy gluing condition for κ = 0 ⇔
B∩(any ray from 0) either has endpoint on ∂B̃, or = ∅.

)

6For this theorem, exclude connected subsets of R of length > πκ and circles of length > 2 ·πκ
from CBBκ.
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(2) Application of warped product characterization theorem :

(a) Gromov Q [G87]: If X∈ CAT 0 is an n-manifold, is X homeomorphic to En?

(b) Davis-Januszkiewicz gave counterexamples by (complicated) hyperboliza-
tion process [DJ92]. Ancel-Guilbault used hyperbolic trigonometry and
structure theory for compact contractible manifolds to construct counter-
examples [AG97]. In fact these are hyperbolic joins (Join−1).

(c) Q [AG97]: If B ∈ CAT−1, does B × R always carry a negatively curved
metric whose levels are convex subsets?

(d) Yes: B×f R ∈ CAT−1 for any f ∈ C̆ −1 (e.g. f = cosh dp for p ∈ B, or f =
exp (Busemann function). These are the only warped product examples.

(3) Proving “if” in CAT0 characterization theorem:

(a) Reduce to F =M2(κ). By §12.(2)(d), reduce to dimF = 1.

(b) (Take κ = 0.) Decompose B ×R into strips carrying the metric of

{(p, u) : −εf(p) ≤ u ≤ εf(p)},
gluing top boundary of one strip to bottom boundary of next to get ap-
proximating space S. If B ∈ CBB 0 and f concave, then S ∈ CBB 0. But
when B ∈ CAT 0 and f convex, S takes on positive curvature of gluing
seams ! In this case, at each gluing seam attach a “fin”, i.e. a copy of
{(p, u) : u ≥ εf(p)}, to recover CAT 0 (compare billiards, §6.(2)(c)). See
figure, where X is the simply connected cover of the illustrated surface.

(4) Proving “only if” in characterization theorem:

(a) CATκ has a rich theory of subspaces. (A problematical topic in CBBκ.)7

Say U ⊂ X has extrinsic curvature ≤ A if intrinsic distance s in U and

extrinsic distance r in X satisfy s − r ≤ A2

24 r
3 + o(r3) for s sufficiently

small. For subspaces U = {p} × F , apply:
A.-Bishop Gauss-equation theorem [AB 06] .

( Extrinsic curvature U ) ≤ A =⇒ curvU ≤ κ+A2.

(b) CBBκ allows a standard method of proof by induction on n = dimX :
Prove for n = 1, then show the theorem passes from direction spaces ΣpX
(dimension n− 1) to X .

(c) Proof of CBBκ gluing condition requires Petrunin incomplete-globalization

theorem (§14.(2)(a)) : Set B †0 = B † − (f †)−1(0). Then (B†0)c ∼= B †. Thus

it suffices to prove B †0 is geodesic, and curvB †0 ≥ κ.

7Celebrated problem: does ∂S inherit a curvature bound if S = convex set in X ∈ CBBκ ?
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14. Globalization II

(1) • Let X = complete intrinsic space with curvX ≤ κ.

(a) A.-Bishop no-conjugate-point theorem [AB90]. Let γ be a simple geodesic,

`(γ)< πκ. Then there is a space N ∈ CATκ, a geodesic γ̂ in an open subset Ω̂ ⊂ N ,

and an open isometric embedding Φ : Ω̂→ X with Φ ◦ γ̂ = γ. (If γ not simple, use
isometric immersion.)

(b) Proof by Reshetnyak gluing (§ 5) of small CATκ balls along α̂.8

(c) Then local geodesics move homotopically as endpoints follow preassigned
paths, stopping only if length reaches πκ. Using Alexandrov patchwork (§3), can
now prove Hadamard-Cartan theorem (§3) as well as the following (each leading to
the next):

Radial lemma [AB96]. If geodesics from p to points of B(p, πκ/2) exist, are
unique and vary continuously, then B(p, πκ/2) ∈ CATκ.

Lifting globalization theorem [AKP]. ∃ B ∈ CATκ with B = B(p̂, πκ/2) for
some p̂ ∈ B, and a local isometry Φ : B → X with Φ(p̂) = p, such that for any
curve α : [0, 1] → X with α(0) = p and lengthα < πκ/2, there is a unique path
α̂ : [0, 1]→ B such that α̂(0) = p̂ and Φ ◦ α̂ = α.

Generalized Hadamard–Cartan theorem [AKP] (due to Bowditch if X is proper
[Bo95]). X ∈ CATκ ⇐⇒ X is 2 · πκ-simply connected, i.e. any closed curve of
length < 2 · πκ is null-homotopic through closed curves of length < 2 · πκ.

(2) (a) Petrunin incomplete-globalization theorem [P]. Let X be a geodesic space
and Xc be its completion. If curvX ≥ κ, then Xc ∈ CBBκ.

8The no-conjugate-point theorem of [AB90] applies to a larger class of spaces and required a
different proof. This CATκ formulation is due to Lytchak.
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15. Polyhedral examples

• X = spherical, Euclidean or hyperbolic polyhedral space, i.e. ∃ finite triangulation
by simplices σ, σ isometric to simplex σm in Mm(κ), fixed κ, some m. 9

(1) (a) A neighborhood of p ∈ X is isometric to a tip of Cone κ Σp.

(b) Linkσ = {σ′ : σ ∩ σ′ = ∅ ; σ and σ′ are faces of the same simplex}.
(c) Linkσ carries natural structure of spherical polyhedron.

(d) If p = interior point of k-simplex σ, then TpX ∼= Ek × (Cone Linkσ),

so ΣpX ∼= k-th spherical suspension,
(
Cone 1

)k
Linkσ.

(2) (a) Theorem. X ∈ CBBκ ⇐⇒ following conditions hold:

(i) X is pure, i.e. ∃ m ≥ 0 such that any σ = face of some σm.

(ii) Linkσm−1 = one or two points.

(iii) Linkσk, k ≤ m− 2, is connected.

(iv) Linkσm−2 isometric to circle of length ≤ 2 · π or closed interval of length
≤ π.

(b) Theorem. curvX ≤ κ
⇔ any connected component of any Linkσ is (2 · π)-simply connected

⇔ any closed local geodesic in Linkσ has length at least 2 · π.

9Source for this section: [AKP].
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